A dichotomy for sampling barrier-crossing events of random walks with regularly varying tails

A. B. Dieker, Guido R. Lagos

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

We study how to sample paths of a random walk up to the first time it crosses a fixed barrier, in the setting where the step sizes are independent and identically distributed with negative mean and have a regularly varying right tail. We introduce a desirable property for a change of measure to be suitable for exact simulation. We study whether the change of measure of Blanchet and Glynn (2008) satisfies this property and show that it does so if and only if the tail index α of the right tail lies in the interval (1, 3/2).

Idioma originalInglés
Páginas (desde-hasta)1213-1232
Número de páginas20
PublicaciónJournal of Applied Probability
Volumen54
N.º4
DOI
EstadoPublicada - 1 dic. 2017

Huella

Profundice en los temas de investigación de 'A dichotomy for sampling barrier-crossing events of random walks with regularly varying tails'. En conjunto forman una huella única.

Citar esto