A counterexample to De Pierro's conjecture on the convergence of under-relaxed cyclic projections

Roberto Cominetti, Vera Roshchina, Andrew Williamson

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

The convex feasibility problem consists in finding a point in the intersection of a finite family of closed convex sets. When the intersection is empty, a best compromise is to search for a point that minimizes the sum of the squared distances to the sets. In 2001, de Pierro conjectured that the limit cycles generated by the ε-under-relaxed cyclic projection method converge when ε ↓ 0 towards a least squares solution. While the conjecture has been confirmed under fairly general conditions, we show that it is false in general by constructing a system of three compact convex sets in R3 for which the ε-under-relaxed cycles do not converge.

Idioma originalInglés
Páginas (desde-hasta)3-12
Número de páginas10
PublicaciónOptimization
Volumen68
N.º1
DOI
EstadoPublicada - 2 ene. 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A counterexample to De Pierro's conjecture on the convergence of under-relaxed cyclic projections'. En conjunto forman una huella única.

Citar esto