A Bayesian nonparametric model for classification of longitudinal profiles

Jeremy T. Gaskins, Claudio Fuentes, Rolando De La Cruz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)


Across several medical fields, developing an approach for disease classification is an important challenge. The usual procedure is to fit a model for the longitudinal response in the healthy population, a different model for the longitudinal response in the diseased population, and then apply Bayes' theorem to obtain disease probabilities given the responses. Unfortunately, when substantial heterogeneity exists within each population, this type of Bayes classification may perform poorly. In this article, we develop a new approach by fitting a Bayesian nonparametric model for the joint outcome of disease status and longitudinal response, and then we perform classification through the clustering induced by the Dirichlet process. This approach is highly flexible and allows for multiple subpopulations of healthy, diseased, and possibly mixed membership. In addition, we introduce an Markov chain Monte Carlo sampling scheme that facilitates the assessment of the inference and prediction capabilities of our model. Finally, we demonstrate the method by predicting pregnancy outcomes using longitudinal profiles on the human chorionic gonadotropin beta subunit hormone levels in a sample of Chilean women being treated with assisted reproductive therapy.

Idioma originalInglés
Páginas (desde-hasta)209-225
Número de páginas17
EstadoPublicada - 1 ene. 2023
Publicado de forma externa


Profundice en los temas de investigación de 'A Bayesian nonparametric model for classification of longitudinal profiles'. En conjunto forman una huella única.

Citar esto