Vegetable dynamicks: The role of water in plant movements

Jacques Dumais, Yoël Forterre

Research output: Contribution to journalArticlepeer-review

178 Scopus citations


Although they lack muscle, plants have evolved a remarkable range of mechanisms to create motion, from the slow growth of shoots to the rapid snapping of carnivorous plants and the explosive rupture of seed pods. Here we review the key fluid mechanics principles used by plants to achieve movements, summarizing current knowledge and recent discoveries. We begin with a brief overview of water transport and material properties in plants and emphasize that the poroelastic timescale of water diffusion through soft plant tissue imposes constraints on the possible mechanisms for motion. We then discuss movements that rely only on the transport of water, from irreversible growth to reversible swelling/shrinking due to osmotic or humidity gradients. We next show how plants use mechanical instabilitiessnap buckling, cavitation, and fractureto speed up their movements beyond the limits imposed by simple hydraulic mechanisms. Finally, we briefly discuss alternative schemes, involving capillarity or complex fluids.

Original languageEnglish
Pages (from-to)453-478
Number of pages26
JournalAnnual Review of Fluid Mechanics
StatePublished - 2011


  • Complex fluids
  • Growth
  • Instability
  • Osmotic pressure
  • Plant biomechanics
  • Poroelasticity
  • Surface tension


Dive into the research topics of 'Vegetable dynamicks: The role of water in plant movements'. Together they form a unique fingerprint.

Cite this