Ultrasonic Sensor: A Fast and Non-Destructive System to Measure the Viscosity and Density of Molecular Fluids

Romina Muñoz, Juan Francisco Fuentealba, Sebastián Michea, Paula A. Santana, Juan Ignacio Martinez, Nathalie Casanova-Morales, Vicente Salinas-Barrera

Research output: Contribution to journalArticlepeer-review

Abstract

This study presents the design and development of an ultrasonic sensor as a fundamental tool for characterizing the properties of fluids and biofluids. The analysis primarily focuses on measuring the electrical parameters of the system, which correlate with the density and viscosity of the solutions, in sample volumes of microliters and with high temporal resolution (up to 1 data point per second). The use of this sensor allows the fast and non-destructive evaluation of the viscosity and density of fluids deposited on its free surface. The measurements are based on obtaining the impedance versus frequency curve and the phase difference curve (between current and voltage) versus frequency. In this way, characteristic parameters of the transducer, such as the resonance frequency, phase, minimum impedance, and the quality factor of the resonant system, can characterize variations in density and viscosity in the fluid under study. The results obtained revealed the sensor’s ability to identify two parameters sensitive to viscosity and two parameters sensitive to density. As a proof of concept, the unfolding of the bovine albumin protein was studied, resulting in a curve that reflects its unfolding kinetics in the presence of urea.

Original languageEnglish
Article number346
JournalBiosensors
Volume14
Issue number7
DOIs
StatePublished - Jul 2024
Externally publishedYes

Keywords

  • biofluid applications
  • chemical compounds
  • resonance system
  • ultrasonics sensor

Fingerprint

Dive into the research topics of 'Ultrasonic Sensor: A Fast and Non-Destructive System to Measure the Viscosity and Density of Molecular Fluids'. Together they form a unique fingerprint.

Cite this