Transient species driving ecosystem multifunctionality: Insights from competitive interactions between rocky intertidal mussels

Claudia Betancourtt, Alexis M. Catalán, Diego F. Morales-Torres, Daniela N. Lopez, Valentina Escares-Aguilera, Luis P. Salas-Yanquin, Joseline A. Büchner-Miranda, Oscar R. Chaparro, Jorge Nimptsch, Bernardo R. Broitman, Nelson Valdivia

Research output: Contribution to journalArticlepeer-review


Anthropogenic biodiversity loss poses a significant threat to ecosystem functioning worldwide. Numerically dominant and locally rare (i.e., transient) species are key components of biodiversity, but their contribution to multiple ecosystem functions (i.e., multifunctionality) has been seldomly assessed in marine ecosystems. To fill this gap, here we analyze the effects of a dominant and a transient species on ecosystem multifunctionality. In an observational study conducted along ca. 200 km of the southeastern Pacific coast, the purple mussel Perumytilus purpuratus numerically dominated the mid-intertidal and the dwarf mussel Semimytilus patagonicus exhibited low abundances but higher recruitment rates. In laboratory experiments, the relative abundances of both species were manipulated to simulate the replacement of P. purpuratus by S. patagonicus and five proxies for ecosystem functions—rates of clearance, oxygen consumption, total biodeposit, organic biodeposit, and excretion—were analyzed. This replacement had a positive, linear, and significant effect on the combined ecosystem functions, particularly oxygen consumption and excretion rates. Accordingly, S. patagonicus could well drive ecosystem functioning given favorable environmental conditions for its recovery from rarity. Our study highlights therefore the key role of transient species for ecosystem performance. Improving our understanding of these dynamics is crucial for effective ecosystem conservation, especially in the current scenario of biological extinctions and invasions.

Original languageEnglish
Article number106422
JournalMarine Environmental Research
StatePublished - Apr 2024
Externally publishedYes


  • BEF research
  • Biodiversity
  • Dominance
  • Ecosystem functioning
  • Physiological variables
  • Species identity


Dive into the research topics of 'Transient species driving ecosystem multifunctionality: Insights from competitive interactions between rocky intertidal mussels'. Together they form a unique fingerprint.

Cite this