TY - JOUR
T1 - The role of the mean state in meridional mode structure and growth
AU - Martinez-Villalobos, Cristian
AU - Vimont, Daniel J.
N1 - Funding Information:
Acknowledgments. This work was supported by NSF Climate and Large Scale Dynamics Projects ATM-0849689 and 1463970 and the University of Wisconsin Climate, People, and the Environment Program. We thank Tim Li for handling the manuscript; and S.-P. Xie, A. Subramanian, and one anonymous reviewer for their comments and suggestions.
Funding Information:
This work was supported by NSF Climate and Large Scale Dynamics Projects ATM-0849689 and 1463970 and the University of Wisconsin Climate, People, and the Environment Program. We thank Tim Li for handling the manuscript; and S.-P. Xie, A. Subramanian, and one anonymous reviewer for their comments and suggestions.
Publisher Copyright:
© 2016 American Meteorological Society.
PY - 2016
Y1 - 2016
N2 - This study uses a simple linear coupled model to investigate the role of the WES feedback and ITCZ mean states in meridional mode variability. Optimal structures that maximize transient growth are calculated for mean states characteristic of boreal spring and boreal fall in the tropical Atlantic. During boreal spring the leading optimal structure is a zonal mode that propagates westward and does not resemble the observed meridional mode. In contrast, the leading optimal structure during fall is a sea surface temperature (SST) monopole over the Northern Hemisphere (NH) that propagates equatorward and westward and that closely matches meridional mode variability during this season. It is found that the boreal fall optimal growth greatly exceeds growth of the corresponding optimal during boreal spring, despite the observed boreal spring peak in Atlantic meridional mode variance. Sensitivity studies are used to explore the role of Northern or Southern Hemisphere initial conditions, ITCZ width, and ITCZ location in meridional mode growth and structure. It is found that growth is favored (i) for optimal structures that originate in the Northern Hemisphere, especially for boreal fall mean states; (ii) for symmetric mean states, equatorially symmetric structures maximize growth under narrow ITCZ configurations, and antisymmetric structures maximize growth under wider ITCZ configurations; and (iii) for antisymmetric mean states (and realistic ITCZ width), growth is maximized when the ITCZ is located offof the equator. The implications of these findings are discussed.
AB - This study uses a simple linear coupled model to investigate the role of the WES feedback and ITCZ mean states in meridional mode variability. Optimal structures that maximize transient growth are calculated for mean states characteristic of boreal spring and boreal fall in the tropical Atlantic. During boreal spring the leading optimal structure is a zonal mode that propagates westward and does not resemble the observed meridional mode. In contrast, the leading optimal structure during fall is a sea surface temperature (SST) monopole over the Northern Hemisphere (NH) that propagates equatorward and westward and that closely matches meridional mode variability during this season. It is found that the boreal fall optimal growth greatly exceeds growth of the corresponding optimal during boreal spring, despite the observed boreal spring peak in Atlantic meridional mode variance. Sensitivity studies are used to explore the role of Northern or Southern Hemisphere initial conditions, ITCZ width, and ITCZ location in meridional mode growth and structure. It is found that growth is favored (i) for optimal structures that originate in the Northern Hemisphere, especially for boreal fall mean states; (ii) for symmetric mean states, equatorially symmetric structures maximize growth under narrow ITCZ configurations, and antisymmetric structures maximize growth under wider ITCZ configurations; and (iii) for antisymmetric mean states (and realistic ITCZ width), growth is maximized when the ITCZ is located offof the equator. The implications of these findings are discussed.
KW - Atlantic Ocean
KW - Atmosphere-ocean interaction
KW - Circulation/Dynamics
KW - Dynamics
KW - Geographic location/entity
KW - Tropical variability
KW - Tropics
KW - Variability
UR - http://www.scopus.com/inward/record.url?scp=85008606546&partnerID=8YFLogxK
U2 - 10.1175/JCLI-D-15-0542.1
DO - 10.1175/JCLI-D-15-0542.1
M3 - Article
AN - SCOPUS:85008606546
SN - 0894-8755
VL - 29
SP - 3907
EP - 3921
JO - Journal of Climate
JF - Journal of Climate
IS - 10
ER -