TY - JOUR
T1 - The low single nucleotide polymorphism heritability of plasma and saliva cortisol levels
AU - Neumann, Alexander
AU - Direk, Nese
AU - Crawford, Andrew A.
AU - Mirza, Saira
AU - Adams, Hieab
AU - Bolton, Jennifer
AU - Hayward, Caroline
AU - Strachan, David P.
AU - Payne, Erin K.
AU - Smith, Jennifer A.
AU - Milaneschi, Yuri
AU - Penninx, Brenda
AU - Hottenga, Jouke J.
AU - de Geus, Eco
AU - Oldehinkel, Albertine J.
AU - van der Most, Peter J.
AU - de Rijke, Yolanda
AU - Walker, Brian R.
AU - Tiemeier, Henning
N1 - Funding Information:
Funding was obtained from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organisation for Health Research and Development (ZonMW) grants 904-61-090, 985-10-002, 912-10-020, 904-61-193,480-04-004, 463-06-001, 451-04-034, 400-05-717, Addiction-31160008, Middelgroot-911-09-032, Spinozapremie 56-464-14192, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI -NL, 184.021.007, NWO-Groot 480-15-001/674). VU Institute for Health and Care Research (EMGO+); the European Community's Seventh Framework Program (FP7/2007-2013), ENGAGE (HEALTH-F4-2007-201413); the European Research Council (ERC Advanced, 230374, ERC Starting grant 284167), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH, R01D0042157-01A, MH081802; R01 DK092127-04, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO.
Funding Information:
This research is part of the TRacking Adolescents' Individual Lives Survey (TRAILS). Participating centers of TRAILS include various departments of the University Medical Center and University of Groningen, the University of Utrecht, the Radboud Medical Center Nijmegen, and the Parnassia Bavo group, all in the Netherlands. TRAILS has been financially supported by grants from the Netherlands Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 940-38-011; ZonMW Brainpower grant 100-001-004; ZonMw Risk Behaviour and Dependence grants 60-60600-97-118; ZonMw Culture and Health grant 261-98-710; Social Sciences Council medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social Sciences Council project grants GB-MaGW 452-04-314 and GB-MaGW 452-06-004; NWO large-sized investment grant 175.010.2003.005; NWO Longitudinal Survey and Panel Funding 481-08-013; NWO Vici 016.130.002; NWO Gravitation 024.001.003), the Dutch Ministry of Justice (WODC), the European Science Foundation (EuroSTRESS project FP-006), Biobanking and Biomolecular Resources Research Infrastructure BBMRI-NL (CP 32), the participating universities, and Accare Centre for Child and Adolescent Psychiatry. We are grateful to all individuals who participated in this research, and to everyone who worked on this project and made it possible.
Funding Information:
A. Neumann and H. Tiemeier are supported by a grant of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (NWO grant No. 024.001.003, Consortium on Individual Development). The work of H. Tiemeier is further supported by a European Union’s Horizon 2020 research and innovation program (Contract grant number: 633595, DynaHealth) and a NWO-VICI grant (NWO-ZonMW: 016.VICI.170.200). B. Walker and A. Crawford are supported by a Wellcome Trust Investigator Award, British Heart Foundation Programme Grant and Scottish Government Chief Scientist Office Project Grant. We are grateful to all the co-investigators and participants who contributed to the original CORtisol NETwork plasma cortisol genome wide association study meta-analysis, who are listed in Bolton et al. (2014) .
Funding Information:
MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001881, and DK063491. Funding for SHARe genotyping was provided by NHLBI Contract N02-HL-64278. Genotyping was performed at Affymetrix (Santa Clara, California, USA) and the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) using the Affymetrix Genome-Wide Human SNP Array 6.0. Funding support for the cortisol dataset was provided by grant HL059386, and analysis support was provided by R01 HL101161 and P60MD002249.
Funding Information:
The Rotterdam Study is supported by the Erasmus MC University Medical Center and Erasmus University Rotterdam; The Netherlands Organisation for Scientific Research (NWO); The Netherlands Organisation for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); The Netherlands Genomics Initiative (NGI); the Ministry of Education, Culture and Science; the Ministry of Health, Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam. The contribution of inhabitants, general practitioners and pharmacists of the Ommoord district to the Rotterdam Study is gratefully acknowledged.
Funding Information:
Funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10-000-1002); the Center for Medical Systems Biology (CSMB, NWO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University’s Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, R01D0042157-01A, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health.Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO.
Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/11
Y1 - 2017/11
N2 - Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n = 5705) and saliva levels (n = 1717), as well as diurnal saliva levels (n = 1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n = 12,597) and saliva cortisol (n = 7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0–13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations.
AB - Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n = 5705) and saliva levels (n = 1717), as well as diurnal saliva levels (n = 1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n = 12,597) and saliva cortisol (n = 7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0–13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations.
KW - Cortisol
KW - GWAS
KW - Genetics
KW - Heritability
KW - Single nucleotide polymorphism
UR - http://www.scopus.com/inward/record.url?scp=85028014724&partnerID=8YFLogxK
U2 - 10.1016/j.psyneuen.2017.08.011
DO - 10.1016/j.psyneuen.2017.08.011
M3 - Article
C2 - 28843169
AN - SCOPUS:85028014724
SN - 0306-4530
VL - 85
SP - 88
EP - 95
JO - Psychoneuroendocrinology
JF - Psychoneuroendocrinology
ER -