Abstract
The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational biases and selection effects are properly accounted for. Here we show how epos, the Exoplanet Population Observation Simulator, can be used to constrain planet formation models by comparing the Bern planet population synthesis models to the Kepler exoplanetary systems. We compile a series of diagnostics, based on occurrence rates of different classes of planets and the architectures of multiplanet systems within 1 au, that can be used as benchmarks for future and current modeling efforts. Overall, we find that a model with 100-seed planetary cores per protoplanetary disk provides a reasonable match to most diagnostics. Based on these diagnostics we identify physical properties and processes that would result in the Bern model more closely matching the known planetary systems. These are as follows: moving the planet trap at the inner disk edge outward; increasing the formation efficiency of mini-Neptunes; and reducing the fraction of stars that form observable planets. We conclude with an outlook on the composition of planets in the habitable zone, and highlight that the majority of simulated planets smaller than 1.7 Earth radii in this zone are predicted to have substantial hydrogen atmospheres. The software used in this paper is available online for public scrutiny at https://github.com/GijsMulders/epos.
Original language | English |
---|---|
Article number | 157 |
Journal | Astrophysical Journal |
Volume | 887 |
Issue number | 2 |
DOIs | |
State | Published - 20 Dec 2019 |
Externally published | Yes |
Access to Document
Fingerprint
Dive into the research topics of 'The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astrophysical Journal, Vol. 887, No. 2, 157, 20.12.2019.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler
AU - Mulders, Gijs D.
AU - Mordasini, Christoph
AU - Pascucci, Ilaria
AU - Ciesla, Fred J.
AU - Emsenhuber, Alexandre
AU - Apai, Dániel
N1 - Funding Information: Gijs D. Mulders Christoph Mordasini Ilaria Pascucci Fred J. Ciesla Alexandre Emsenhuber D�niel Apai Gijs D. Mulders Christoph Mordasini Ilaria Pascucci Fred J. Ciesla Alexandre Emsenhuber D�niel Apai Department of the Geophysical Sciences, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA Earths in Other Solar Systems Team, NASA Nexus for Exoplanet System Science, USA Physikalisches Institut, Universit�t Bern, Gesellschaftstrasse 6, 3012 Bern, Switzerland Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, USA Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA Gijs D. Mulders, Christoph Mordasini, Ilaria Pascucci, Fred J. Ciesla, Alexandre Emsenhuber and D�niel Apai 2019-12-20 2019-12-17 16:28:52 cgi/release: Article released bin/incoming: New from .zip NASA NNX15AD94G Swiss National Science Foundation BSSGI0_155816 yes The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational biases and selection effects are properly accounted for. Here we show how epos , the Exoplanet Population Observation Simulator, can be used to constrain planet formation models by comparing the Bern planet population synthesis models to the Kepler exoplanetary systems. We compile a series of diagnostics, based on occurrence rates of different classes of planets and the architectures of multiplanet systems within 1 au, that can be used as benchmarks for future and current modeling efforts. Overall, we find that a model with 100-seed planetary cores per protoplanetary disk provides a reasonable match to most diagnostics. Based on these diagnostics we identify physical properties and processes that would result in the Bern model more closely matching the known planetary systems. These are as follows: moving the planet trap at the inner disk edge outward; increasing the formation efficiency of mini-Neptunes; and reducing the fraction of stars that form observable planets. We conclude with an outlook on the composition of planets in the habitable zone, and highlight that the majority of simulated planets smaller than 1.7 Earth radii in this zone are predicted to have substantial hydrogen atmospheres. The software used in this paper is available online for public scrutiny at � https://github.com/GijsMulders/epos . � 2019. The American Astronomical Society. All rights reserved. Alibert Y., Carron F., Fortier A. et al 2013 A&A 558 A109 10.1051/0004-6361/201321690 Alibert Y., Carron F., Fortier A. et al A&A 0004-6361 558 2013 A109 Alibert Y., Mordasini C., Benz W. and Winisdoerffer C. 2005 A&A 434 343 10.1051/0004-6361:20042032 Alibert Y., Mordasini C., Benz W. and Winisdoerffer C. A&A 0004-6361 434 2005 343 Andrews S., Rosenfeld K. A., Kraus A. L. and Wilner D. J. 2013 ApJ 771 129 10.1088/0004-637X/771/2/129 Andrews S., Rosenfeld K. A., Kraus A. L. and Wilner D. J. ApJ 0004-637X 771 2 129 2013 129 Apai D., Banzatti A., Ballering N. P. et al 2019 BAAS 51 475 Apai D., Banzatti A., Ballering N. P. et al BAAS 0002-7537 51 2019 475 Astropy Collaboration, Price-Whelan A. M. and Sipőcz B. M. 2018 AJ 156 123 10.3847/1538-3881/aabc4f Astropy Collaboration, Price-Whelan A. M. and Sipőcz B. M. AJ 1538-3881 156 3 123 2018 123 Ballard S. and Johnson J. A. 2016 ApJ 816 66 10.3847/0004-637X/816/2/66 Ballard S. and Johnson J. A. ApJ 0004-637X 816 2 66 2016 66 Benz W., Ida S., Alibert Y., Lin D. and Mordasini C. 2014 Protostars and Planets VI, 691 ed H. Beuther et al (Tucson, AZ: Univ. of Arizona Press) Benz W., Ida S., Alibert Y., Lin D. and Mordasini C. ed Beuther H. et al Protostars and Planets VI, 691 2014 Berger T. A., Huber D., Gaidos E. and van Saders J. L. 2018 ApJ 866 99 10.3847/1538-4357/aada83 Berger T. A., Huber D., Gaidos E. and van Saders J. L. ApJ 0004-637X 866 2 99 2018 99 Brakensiek J. and Ragozzine D. 2016 ApJ 821 47 10.3847/0004-637X/821/1/47 Brakensiek J. and Ragozzine D. ApJ 0004-637X 821 1 47 2016 47 Burke C. J. and Catanzarite J. 2017 Uniform Modeling of KOIs: MCMC Notes for Data Release 25, Kepler Science Document KSCI-19111-002 Burke C. J. and Catanzarite J. Uniform Modeling of KOIs: MCMC Notes for Data Release 25, Kepler Science Document KSCI-19111-002 2017 Burke C. J., Christiansen J. L., Mullally F. et al 2015 ApJ 809 8 10.1088/0004-637X/809/1/8 Burke C. J., Christiansen J. L., Mullally F. et al ApJ 0004-637X 809 1 8 2015 8 Cai M. X., Portegies Zwart S. and van Elteren A. 2018 MNRAS 474 5114 10.1093/mnras/stx3064 Cai M. X., Portegies Zwart S. and van Elteren A. MNRAS 0035-8711 474 2018 5114 Carrera D., Ford E. B. and Izidoro A. 2019 MNRAS 486 3874 10.1093/mnras/stz974 Carrera D., Ford E. B. and Izidoro A. MNRAS 0035-8711 486 2019 3874 Chambers J. E. 1999 MNRAS 304 793 10.1046/j.1365-8711.1999.02379.x Chambers J. E. MNRAS 0035-8711 304 1999 793 Ciesla F. J., Mulders G. D., Pascucci I. and Apai D. 2015 ApJ 804 9 10.1088/0004-637X/804/1/9 Ciesla F. J., Mulders G. D., Pascucci I. and Apai D. ApJ 0004-637X 804 1 9 2015 9 Dawson R. I., Lee E. J. and Chiang E. 2016 ApJ 822 54 10.3847/0004-637X/822/1/54 Dawson R. I., Lee E. J. and Chiang E. ApJ 0004-637X 822 1 54 2016 54 Dittkrist K. M., Mordasini C., Klahr H., Alibert Y. and Henning T. 2014 A&A 567 A121 10.1051/0004-6361/201322506 Dittkrist K. M., Mordasini C., Klahr H., Alibert Y. and Henning T. A&A 0004-6361 567 2014 A121 Dressing C. and Charbonneau D. 2015 ApJ 807 45 10.1088/0004-637X/807/1/45 Dressing C. and Charbonneau D. ApJ 0004-637X 807 1 45 2015 45 Fabrycky D. C., Lissauer J. J., Ragozzine D. et al 2014 ApJ 790 146 10.1088/0004-637X/790/2/146 Fabrycky D. C., Lissauer J. J., Ragozzine D. et al ApJ 0004-637X 790 2 146 2014 146 Fernandes R. B., Mulders G. D., Pascucci I., Mordasini C. and Emsenhuber A. 2019 ApJ 874 81 10.3847/1538-4357/ab0300 Fernandes R. B., Mulders G. D., Pascucci I., Mordasini C. and Emsenhuber A. ApJ 0004-637X 874 1 81 2019 81 Fischer R. A. and Ciesla F. J. 2014 E&PSL 392 28 10.1016/j.epsl.2014.02.011 Fischer R. A. and Ciesla F. J. E&PSL 392 2014 28 Foreman-Mackey D., Hogg D. W., Lang D. and Goodman J. 2013 PASP 125 306 10.1086/670067 Foreman-Mackey D., Hogg D. W., Lang D. and Goodman J. PASP 1538-3873 125 925 306 2013 306 Fortier A., Alibert Y., Carron F., Benz W. and Dittkrist K. M. 2013 A&A 549 A44 10.1051/0004-6361/201220241 Fortier A., Alibert Y., Carron F., Benz W. and Dittkrist K. M. A&A 0004-6361 549 2013 A44 Fouchet L., Alibert Y., Mordasini C. and Benz W. 2012 A&A 540 A107 10.1051/0004-6361/201117617 Fouchet L., Alibert Y., Mordasini C. and Benz W. A&A 0004-6361 540 2012 A107 Fulton B. J., Petigura E. A., Howard A. W. et al 2017 AJ 154 109 10.3847/1538-3881/aa80eb Fulton B. J., Petigura E. A., Howard A. W. et al AJ 1538-3881 154 3 109 2017 109 Furlan E., Ciardi D. R., Cochran W. D. et al 2018 ApJ 861 149 10.3847/1538-4357/aaca34 Furlan E., Ciardi D. R., Cochran W. D. et al ApJ 0004-637X 861 2 149 2018 149 Furlan E., Ciardi D. R., Everett M. E. et al 2017 AJ 153 71 10.3847/1538-3881/153/2/71 Furlan E., Ciardi D. R., Everett M. E. et al AJ 1538-3881 153 2 71 2017 71 Gillon M., Triaud A. H. M. J., Demory B.-O. et al 2017 Natur 542 456 10.1038/nature21360 Gillon M., Triaud A. H. M. J., Demory B.-O. et al Natur 542 2017 456 Hansen B. M. S. 2017 MNRAS 467 1531 10.1093/mnras/stx182 Hansen B. M. S. MNRAS 0035-8711 467 2017 1531 Hansen B. M. S. and Murray N. 2012 ApJ 751 158 10.1088/0004-637X/751/2/158 Hansen B. M. S. and Murray N. ApJ 0004-637X 751 2 158 2012 158 Hansen B. M. S. and Murray N. 2013 ApJ 775 53 10.1088/0004-637X/775/1/53 Hansen B. M. S. and Murray N. ApJ 0004-637X 775 1 53 2013 53 He M. Y., Ford E. B. and Ragozzine D. 2019 MNRAS 490 4575 10.1093/mnras/stz2869 He M. Y., Ford E. B. and Ragozzine D. MNRAS 0035-8711 490 2019 4575 Howard A. W., Marcy G. W., Bryson S. T. et al 2012 ApJS 201 15 10.1088/0067-0049/201/2/15 Howard A. W., Marcy G. W., Bryson S. T. et al ApJS 0067-0049 201 2 15 2012 15 Howard A. W., Marcy G. W., Johnson J. A. et al 2010 Sci 330 653 10.1126/science.1194854 Howard A. W., Marcy G. W., Johnson J. A. et al Sci 330 2010 653 Hsu D. C., Ford E. B., Ragozzine D. and Ashby K. 2019 AJ 158 109 10.3847/1538-3881/ab31ab Hsu D. C., Ford E. B., Ragozzine D. and Ashby K. AJ 1538-3881 158 3 109 2019 109 Hunter J. D. 2007 CSE 9 90 10.1109/MCSE.2007.55 Hunter J. D. CSE 1070-8413 9 2007 90 Ida S. and Lin D. N. C. 2004 ApJ 604 388 10.1086/381724 Ida S. and Lin D. N. C. ApJ 0004-637X 604 1 388 2004 388 Izidoro A., Ogihara M., Raymond S. N. et al 2017 MNRAS 470 1750 10.1093/mnras/stx1232 Izidoro A., Ogihara M., Raymond S. N. et al MNRAS 0035-8711 470 2017 1750 Jin S. and Mordasini C. 2018 ApJ 853 163 10.3847/1538-4357/aa9f1e Jin S. and Mordasini C. ApJ 0004-637X 853 2 163 2018 163 Jin S., Mordasini C., Parmentier V. et al 2014 ApJ 795 65 10.1088/0004-637X/795/1/65 Jin S., Mordasini C., Parmentier V. et al ApJ 0004-637X 795 1 65 2014 65 Johansen A., Davies M. B., Church R. P. and Holmelin V. 2012 ApJ 758 39 10.1088/0004-637X/758/1/39 Johansen A., Davies M. B., Church R. P. and Holmelin V. ApJ 0004-637X 758 1 39 2012 39 Kopparapu R. K., Ramirez R., Kasting J. F. et al 2013 ApJ 765 131 10.1088/0004-637X/765/2/131 Kopparapu R. K., Ramirez R., Kasting J. F. et al ApJ 0004-637X 765 2 131 2013 131 Kraus A. L., Ireland M. J., Huber D., Mann A. W. and Dupuy T. J. 2016 AJ 152 8 10.3847/0004-6256/152/1/8 Kraus A. L., Ireland M. J., Huber D., Mann A. W. and Dupuy T. J. AJ 1538-3881 152 1 8 2016 8 Lee E. J. and Chiang E. 2017 ApJ 842 40 10.3847/1538-4357/aa6fb3 Lee E. J. and Chiang E. ApJ 0004-637X 842 1 40 2017 40 Lopez E. D. and Rice K. 2018 MNRAS 479 5303 10.1093/mnras/sty1707 Lopez E. D. and Rice K. MNRAS 0035-8711 479 2018 5303 Malmberg D. and Davies M. B. 2009 MNRAS: Lett. 394 L26 10.1111/j.1745-3933.2008.00603.x Malmberg D. and Davies M. B. MNRAS: Lett. 394 2009 L26 Mordasini C. 2018 Handbook of Exoplanets Vol. 464 (Cham: Springer) 143 Mordasini C. Handbook of Exoplanets 464 2018 143 Mordasini C., Alibert Y. and Benz W. 2009a A&A 501 1139 10.1051/0004-6361/200810301 Mordasini C., Alibert Y. and Benz W. A&A 0004-6361 501 2009 1139 Mordasini C., Alibert Y., Benz W. and Naef D. 2009b A&A 501 1161 10.1051/0004-6361/200810697 Mordasini C., Alibert Y., Benz W. and Naef D. A&A 0004-6361 501 2009 1161 Mordasini C., Alibert Y., Georgy C. et al 2012a A&A 547 A112 10.1051/0004-6361/201118464 Mordasini C., Alibert Y., Georgy C. et al A&A 0004-6361 547 2012 A112 Mordasini C., Alibert Y., Klahr H. and Henning T. 2012b A&A 547 A111 10.1051/0004-6361/201118457 Mordasini C., Alibert Y., Klahr H. and Henning T. A&A 0004-6361 547 2012 A111 Mordasini C., Mollière P., Dittkrist K. M., Jin S. and Alibert Y. 2015 IJAsB 14 201 10.1017/S1473550414000263 Mordasini C., Mollière P., Dittkrist K. M., Jin S. and Alibert Y. IJAsB 14 2015 201 Moriarty J. and Ballard S. 2016 ApJ 832 34 10.3847/0004-637X/832/1/34 Moriarty J. and Ballard S. ApJ 0004-637X 832 1 34 2016 34 Morton T. D., Bryson S. T., Coughlin J. L. et al 2016 ApJ 822 86 10.3847/0004-637X/822/2/86 Morton T. D., Bryson S. T., Coughlin J. L. et al ApJ 0004-637X 822 2 86 2016 86 Mulders G. D. 2018 EPOS: The Exoplanet Population Observation Simulator v1.0, Zenodo, doi:10.5281/zenodo.1247570 Mulders G. D. EPOS: The Exoplanet Population Observation Simulator 2018 Mulders G. D. 2019 EPOS: The Exoplanet Population Observation Simulator v2.0, Zenodo, doi:10.5281/zenodo.3515380 Mulders G. D. EPOS: The Exoplanet Population Observation Simulator 2019 Mulders G. D., Pascucci I. and Apai D. 2015a ApJ 814 130 10.1088/0004-637X/814/2/130 Mulders G. D., Pascucci I. and Apai D. ApJ 0004-637X 814 2 130 2015 130 Mulders G. D., Pascucci I. and Apai D. 2015b ApJ 798 112 10.1088/0004-637X/798/2/112 Mulders G. D., Pascucci I. and Apai D. ApJ 0004-637X 798 2 112 2015 112 Mulders G. D., Pascucci I., Apai D. and Ciesla F. J. 2018 AJ 156 24 10.3847/1538-3881/aac5ea Mulders G. D., Pascucci I., Apai D. and Ciesla F. J. AJ 1538-3881 156 1 24 2018 24 Oliphant T. E. 2007 CSE 9 10 10.1109/MCSE.2007.58 Oliphant T. E. CSE 1070-8413 9 2007 10 Ormel C. W., Liu B. and Schoonenberg D. 2017 A&A 604 A1 10.1051/0004-6361/201730826 Ormel C. W., Liu B. and Schoonenberg D. A&A 0004-6361 604 2017 A1 Pascucci I., Mulders G. D. and Lopez E. 2019 ApJL 883 L15 10.3847/2041-8213/ab3dac Pascucci I., Mulders G. D. and Lopez E. ApJL 0004-637X 883 2019 L15 Pascucci I., Testi L., Herczeg G. J. et al 2016 ApJ 831 125 10.3847/0004-637X/831/2/125 Pascucci I., Testi L., Herczeg G. J. et al ApJ 0004-637X 831 2 125 2016 125 Pinte C., Menard F., Berger J. P., Benisty M. and Malbet F. 2008 ApJL 673 L63 10.1086/527378 Pinte C., Menard F., Berger J. P., Benisty M. and Malbet F. ApJL 0004-637X 673 2008 L63 Raymond S. N., O’Brien D. P., Morbidelli A. and Kaib N. A. 2009 Icar 203 644 10.1016/j.icarus.2009.05.016 Raymond S. N., O’Brien D. P., Morbidelli A. and Kaib N. A. Icar 203 2009 644 Raymond S. N., Scalo J. and Meadows V. S. 2007 ApJ 669 606 10.1086/521587 Raymond S. N., Scalo J. and Meadows V. S. ApJ 0004-637X 669 1 606 2007 606 Salyk C., Blake G. A., Boogert A. C. A. and Brown J. M. 2011 ApJ 743 112 10.1088/0004-637X/743/2/112 Salyk C., Blake G. A., Boogert A. C. A. and Brown J. M. ApJ 0004-637X 743 2 112 2011 112 Sandford E., Kipping D. and Collins M. 2019 MNRAS 489 3162 10.1093/mnras/stz2350 Sandford E., Kipping D. and Collins M. MNRAS 0035-8711 489 2019 3162 Santerne A., Moutou C., Tsantaki M. et al 2016 A&A 587 A64 10.1051/0004-6361/201527329 Santerne A., Moutou C., Tsantaki M. et al A&A 0004-6361 587 2016 A64 Suzuki D., Bennett D. P., Ida S. et al 2018 ApJL 869 L34 10.3847/2041-8213/aaf577 Suzuki D., Bennett D. P., Ida S. et al ApJL 0004-637X 869 2018 L34 Thompson S. E., Coughlin J. L., Hoffman K. et al 2018 ApJS 235 38 10.3847/1538-4365/aab4f9 Thompson S. E., Coughlin J. L., Hoffman K. et al ApJS 0067-0049 235 2 38 2018 38 Tychoniec Ł., Tobin J. J., Karska A. et al 2018 ApJS 238 19 10.3847/1538-4365/aaceae Tychoniec Ł., Tobin J. J., Karska A. et al ApJS 0067-0049 238 2 19 2018 19 Unterborn C. T., Hinkel N. R. and Desch S. J. 2018 RNAAS 2 116 10.3847/2515-5172/aacf43 Unterborn C. T., Hinkel N. R. and Desch S. J. RNAAS 2515-5172 2 3 116 2018 116 van der Walt S., Colbert S. C. and Varoquaux G. 2011 CSE 13 22 10.1109/MCSE.2011.37 van der Walt S., Colbert S. C. and Varoquaux G. CSE 1070-8413 13 2011 22 Wu Y. and Lithwick Y. 2013 ApJ 772 74 10.1088/0004-637X/772/1/74 Wu Y. and Lithwick Y. ApJ 0004-637X 772 1 74 2013 74 Youdin A. N. 2011 ApJ 742 38 10.1088/0004-637X/742/1/38 Youdin A. N. ApJ 0004-637X 742 1 38 2011 38 Zhu W., Petrovich C., Wu Y., Dong S. and Xie J. 2018 ApJ 860 101 10.3847/1538-4357/aac6d5 Zhu W., Petrovich C., Wu Y., Dong S. and Xie J. ApJ 0004-637X 860 2 101 2018 101 Ziegler C., Law N. M., Baranec C. et al 2018 AJ 156 83 10.3847/1538-3881/aace59 Ziegler C., Law N. M., Baranec C. et al AJ 1538-3881 156 2 83 2018 83 Zink J. K., Christiansen J. L. and Hansen B. M. S. 2019 MNRAS 483 4479 10.1093/mnras/sty3463 Zink J. K., Christiansen J. L. and Hansen B. M. S. MNRAS 0035-8711 483 2019 4479 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved.
PY - 2019/12/20
Y1 - 2019/12/20
N2 - The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational biases and selection effects are properly accounted for. Here we show how epos, the Exoplanet Population Observation Simulator, can be used to constrain planet formation models by comparing the Bern planet population synthesis models to the Kepler exoplanetary systems. We compile a series of diagnostics, based on occurrence rates of different classes of planets and the architectures of multiplanet systems within 1 au, that can be used as benchmarks for future and current modeling efforts. Overall, we find that a model with 100-seed planetary cores per protoplanetary disk provides a reasonable match to most diagnostics. Based on these diagnostics we identify physical properties and processes that would result in the Bern model more closely matching the known planetary systems. These are as follows: moving the planet trap at the inner disk edge outward; increasing the formation efficiency of mini-Neptunes; and reducing the fraction of stars that form observable planets. We conclude with an outlook on the composition of planets in the habitable zone, and highlight that the majority of simulated planets smaller than 1.7 Earth radii in this zone are predicted to have substantial hydrogen atmospheres. The software used in this paper is available online for public scrutiny at https://github.com/GijsMulders/epos.
AB - The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational biases and selection effects are properly accounted for. Here we show how epos, the Exoplanet Population Observation Simulator, can be used to constrain planet formation models by comparing the Bern planet population synthesis models to the Kepler exoplanetary systems. We compile a series of diagnostics, based on occurrence rates of different classes of planets and the architectures of multiplanet systems within 1 au, that can be used as benchmarks for future and current modeling efforts. Overall, we find that a model with 100-seed planetary cores per protoplanetary disk provides a reasonable match to most diagnostics. Based on these diagnostics we identify physical properties and processes that would result in the Bern model more closely matching the known planetary systems. These are as follows: moving the planet trap at the inner disk edge outward; increasing the formation efficiency of mini-Neptunes; and reducing the fraction of stars that form observable planets. We conclude with an outlook on the composition of planets in the habitable zone, and highlight that the majority of simulated planets smaller than 1.7 Earth radii in this zone are predicted to have substantial hydrogen atmospheres. The software used in this paper is available online for public scrutiny at https://github.com/GijsMulders/epos.
UR - http://www.scopus.com/inward/record.url?scp=85077597462&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab5187
DO - 10.3847/1538-4357/ab5187
M3 - Article
AN - SCOPUS:85077597462
SN - 0004-637X
VL - 887
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 157
ER -