@inproceedings{8609673e3a6e4c4bae19c42cadb70d70,
title = "Star formation and stellar winds around the Galactic super-massive black hole",
abstract = "We present our work to study the origin of the massive stars observed close to Sgr A*, the Galactic super-massive black hole, and the dynamics of the massive stars' winds. We argue that the stars were formed in a ∼ 10 4 M⊙accretion disc that existed around Sgr A* in the past. We find that the stellar dynamics constrain the total mass of the stellar population, requiring the mass function to be dominated by massive stars. We present a numerical study of star formation in a massive disc and show the influence of radiative cooling on the resulting mass function. We also present simulations of the accretion of stellar winds onto Sgr A*. We first discuss the strong influence of the stellar dynamics on the accretion onto the central black hole. From realistic simulations of Sgr A* accretion we find that slow winds shock and rapidly cool, forming cold gas clumps and filaments that coexist with the hot X-ray emitting gas. The accretion rate is highly variable on time-scales of tens to hundreds of years. Such variability can lead to a strongly non-linear response through accretion flow physics, making Sgr A* an important energy source for the Galactic centre.",
keywords = "Accretion, Galactic centre, SPH, Star formation, Stellar winds",
author = "Jorge Cuadra",
year = "2008",
doi = "10.1063/1.2840427",
language = "English",
isbn = "9780735404854",
series = "AIP Conference Proceedings",
pages = "348--354",
booktitle = "Astrophysics of Compact Objects - International Conference on Astrophysics of Compact Objects",
note = "International Conference on Astrophysics of Compact Objects ; Conference date: 01-07-2007 Through 07-07-2007",
}