TY - JOUR
T1 - STABILITY of GAS CLOUDS in GALACTIC NUCLEI
T2 - AN EXTENDED VIRIAL THEOREM
AU - Chen, Xian
AU - Amaro-Seoane, Pau
AU - Cuadra, Jorge
N1 - Publisher Copyright:
© 2016. The American Astronomical Society. All rights reserved.
PY - 2016/3/10
Y1 - 2016/3/10
N2 - Cold gas entering the central 1-102 pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest - in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.
AB - Cold gas entering the central 1-102 pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest - in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.
KW - ISM: kinematics and dynamics
KW - galaxies: active
KW - galaxies: nuclei
KW - hydrodynamics
KW - instabilities
UR - http://www.scopus.com/inward/record.url?scp=84960949678&partnerID=8YFLogxK
U2 - 10.3847/0004-637X/819/2/138
DO - 10.3847/0004-637X/819/2/138
M3 - Article
AN - SCOPUS:84960949678
SN - 0004-637X
VL - 819
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 138
ER -