Revisiting the scotogenic model with scalar dark matter

Ivania M. Ávila, Giovanna Cottin, Marco A. Díaz

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The scotogenic model is a well motivated scenario that provides both an explanation for neutrino masses and for dark matter (DM). We focus on a real scalar DM candidate in this model, produced through standard thermal freeze-out. We analyze the parameter space of the model compatible with the observed DM relic abundance, direct and indirect detection searches, limits from lepton flavour violating decays and constraints from the neutrino sector. As the mass differences of the DM with the neutral and charged states are found to be small, the new scalars and fermions of the theory will have macroscopic lifetimes, and could thus be potentially detected with long-lived particle signatures at colliders. We find regions in the parameter space to be - partially or fully - consistent with the DM relic abundance, and the prediction of a long-lived charged scalar or lightest neutral fermion in the scotogenic scenario, for DM masses below 500 GeV. We discuss on the collider phenomenology in some detail.

Original languageEnglish
Article number065001
JournalJournal of Physics G: Nuclear and Particle Physics
Volume49
Issue number6
DOIs
StatePublished - Jun 2022
Externally publishedYes

Keywords

  • dark matter
  • long-lived particles
  • particle physics

Fingerprint

Dive into the research topics of 'Revisiting the scotogenic model with scalar dark matter'. Together they form a unique fingerprint.

Cite this