TY - JOUR
T1 - Replacing SF6 in electrical gas-insulated switchgear
T2 - Technological alternatives and potential life cycle greenhouse gas savings in an EU-28 perspective
AU - Billen, Pieter
AU - Maes, Ben
AU - Larrain, Macarena
AU - Braet, Johan
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
PY - 2020/4
Y1 - 2020/4
N2 - To date, atmospheric concentrations of sulfur hexafluoride (SF6) are the most potent among the greenhouse gases identified by the Intergovernmental Panel on Climate Change (IPCC) and are still rising. In the EU-28, SF6 has been banned from several applications, however, an important exception is gas-insulated electrical switchgear (GIS) for which cost-effective and environmentally sound alternatives were unavailable when the F-Gas regulation was last revised in 2014. To date, after some recent innovations, we argue that the phasing out of SF6 could spur the accelerated development of alternatives with a lower carbon footprint. In the EU-28, the SF6 amount in switchgear is unclear. In this paper, we estimated the SF6 amount to be between 10,800 and 24,700 t (with a mode at 12,700 t) in 2017, resulting in 68 to 140 t of annual emissions from operational leakage only, corresponding to 1.6 to 3.3 Mt of CO2-eq. We additionally calculated the potential greenhouse gas savings over the lifecycle of one exemplary 145 kV gas-insulated switchgear bay upon replacing SF6 by decafluoro-2-methylbutan-3-one (C5-FK) and heptafluoro-2-methylpropanenitrile (C4-FN) mixtures. Projecting these results over the EU-28, a phase-out scenario starting from 2020 onwards could reduce the carbon footprint by a median of 14 Mt of CO2-eq, over a period of 50 years. Extrapolation to medium voltage could be assumed to be of a similar magnitude.
AB - To date, atmospheric concentrations of sulfur hexafluoride (SF6) are the most potent among the greenhouse gases identified by the Intergovernmental Panel on Climate Change (IPCC) and are still rising. In the EU-28, SF6 has been banned from several applications, however, an important exception is gas-insulated electrical switchgear (GIS) for which cost-effective and environmentally sound alternatives were unavailable when the F-Gas regulation was last revised in 2014. To date, after some recent innovations, we argue that the phasing out of SF6 could spur the accelerated development of alternatives with a lower carbon footprint. In the EU-28, the SF6 amount in switchgear is unclear. In this paper, we estimated the SF6 amount to be between 10,800 and 24,700 t (with a mode at 12,700 t) in 2017, resulting in 68 to 140 t of annual emissions from operational leakage only, corresponding to 1.6 to 3.3 Mt of CO2-eq. We additionally calculated the potential greenhouse gas savings over the lifecycle of one exemplary 145 kV gas-insulated switchgear bay upon replacing SF6 by decafluoro-2-methylbutan-3-one (C5-FK) and heptafluoro-2-methylpropanenitrile (C4-FN) mixtures. Projecting these results over the EU-28, a phase-out scenario starting from 2020 onwards could reduce the carbon footprint by a median of 14 Mt of CO2-eq, over a period of 50 years. Extrapolation to medium voltage could be assumed to be of a similar magnitude.
KW - Carbon footprint assessment
KW - Distribution
KW - Electrical switchgear
KW - Phase-out
KW - Sulfur hexafluoride
KW - Transmission
UR - http://www.scopus.com/inward/record.url?scp=85083625382&partnerID=8YFLogxK
U2 - 10.3390/en13071807
DO - 10.3390/en13071807
M3 - Article
AN - SCOPUS:85083625382
SN - 1996-1073
VL - 13
JO - Energies
JF - Energies
IS - 7
M1 - 1807
ER -