Predicting vascular plant diversity in anthropogenic peatlands: Comparison of modeling methods with free satellite data

Ivan Castillo-Riffart, Mauricio Galleguillos, Javier Lopatin, Jorge F. Perez-Quezada

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Peatlands are ecosystems of great relevance, because they have an important number of ecological functions that provide many services to mankind. However, studies focusing on plant diversity, addressed from the remote sensing perspective, are still scarce in these environments. In the present study, predictions of vascular plant richness and diversity were performed in three anthropogenic peatlands on Chiloé Island, Chile, using free satellite data from the sensors OLI, ASTER, and MSI. Also, we compared the suitability of these sensors using two modeling methods: random forest (RF) and the generalized linear model (GLM). As predictors for the empirical models, we used the spectral bands, vegetation indices and textural metrics. Variable importance was estimated using recursive feature elimination (RFE). Fourteen out of the 17 predictors chosen by RFE were textural metrics, demonstrating the importance of the spatial context to predict species richness and diversity. Non-significant differences were found between the algorithms; however, the GLM models often showed slightly better results than the RF. Predictions obtained by the different satellite sensors did not show significant differences; nevertheless, the best models were obtained with ASTER (richness: R2 = 0.62 and %RMSE = 17.2, diversity: R2 = 0.71 and %RMSE = 20.2, obtained with RF and GLM respectively), followed by OLI and MSI. Diversity obtained higher accuracies than richness; nonetheless, accurate predictions were achieved for both, demonstrating the potential of free satellite data for the prediction of relevant community characteristics in anthropogenic peatland ecosystems.

Original languageEnglish
Article number681
JournalRemote Sensing
Volume9
Issue number7
DOIs
StatePublished - 1 Jul 2017

Keywords

  • ASTER
  • Fen
  • Generalized linear models
  • MSI
  • OLI
  • Random forest
  • Richness
  • Shannon index
  • Sphagnum
  • Wetland

Fingerprint

Dive into the research topics of 'Predicting vascular plant diversity in anthropogenic peatlands: Comparison of modeling methods with free satellite data'. Together they form a unique fingerprint.

Cite this