Abstract
For a fixed integer t > 0, we say that a t-branch split set (the union of t split sets) is dominated by another one on a polyhedron P if all cuts for P obtained from the first t-branch split set are implied by cuts obtained from the second one. We prove that given a rational polyhedron P, any arbitrary family of t-branch split sets has a finite subfamily such that each element of the family is dominated on P by an element from the subfamily. The result for t = 1 (i.e., for split sets) was proved by Averkov [Discrete Optim., 9 (2012), pp. 209-215] extending results in Andersen, Cornuéjols, and Li [Math. Program, 102 (2005), pp. 457-493]. Our result implies that the closure of P with respect to any family of t-branch split sets is a polyhedron. We extend this result by replacing split sets with bounded max-facet-width polyhedra as building blocks, and show that any family of t-branch sets where each set is the union of t polyhedral sets that have bounded max-facet-width has a finite dominating subfamily with respect to P. This latter result generalizes a result of Averkov [Discrete Optim., 9 (2012), pp. 209-215] on bounded max-facet-width polyhedra (corresponding to the case t = 1).
Original language | English |
---|---|
Pages (from-to) | 1340-1341 |
Number of pages | 2 |
Journal | SIAM Journal on Optimization |
Volume | 27 |
Issue number | 3 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Keywords
- Closure
- Cutting planes
- Integer programming
- Polyhedrality