TY - JOUR
T1 - On the Growth of Wildland Fires from a Small Ignition Source
AU - Thomsen, M.
AU - Fernandez-Pello, A. C.
AU - Williams, F. A.
N1 - Publisher Copyright:
© 2023 Taylor & Francis Group, LLC.
PY - 2023
Y1 - 2023
N2 - Wildland and Wildland-Urban-Interface (WUI) fires are an important problem that may have major consequences in terms of safety, air quality, and damage to buildings, infrastructure, and the ecosystem. It is expected that with climate change, the wildland fire and WUI fire problem will only intensify. Wildland fires are often initiated by small ignition sources caused either by human intervention (hot metal fragments or burning biomass) or by natural events (lighting or sun heating). Once the wildfire or structural fire has been ignited and grows, it can spread rapidly through ember spotting, where pieces of burning materials are lifted by the plume of the fire and then transported forward by the wind, landing where they can start spot fires downwind. The ignition mechanisms for all of these fires have the common characteristic of a small and localized area of origin, with the subsequent spread of the fire to wider and larger areas. Because of the three-dimensional characteristics of this type of propagating fire, its rate of spread has an initial acceleration phase leading to an equilibrium rate of spread when the fire reaches a certain size, which is referred to as a “line-fire” type of spread. Most of the studies on wildland fire propagation have been conducted with line fires and have been concerned with characterizing the equilibrium rate of spread rather than the initial spread from a small ignition source. In this paper, some of the studies conducted to date on the subject of wildland fire growth from a small ignition source, and the physics supporting the mathematical expressions that are used to describe the growth of the fire are discussed. An attempt is also made to provide support for these works through a more fundamental approach to model the problem.
AB - Wildland and Wildland-Urban-Interface (WUI) fires are an important problem that may have major consequences in terms of safety, air quality, and damage to buildings, infrastructure, and the ecosystem. It is expected that with climate change, the wildland fire and WUI fire problem will only intensify. Wildland fires are often initiated by small ignition sources caused either by human intervention (hot metal fragments or burning biomass) or by natural events (lighting or sun heating). Once the wildfire or structural fire has been ignited and grows, it can spread rapidly through ember spotting, where pieces of burning materials are lifted by the plume of the fire and then transported forward by the wind, landing where they can start spot fires downwind. The ignition mechanisms for all of these fires have the common characteristic of a small and localized area of origin, with the subsequent spread of the fire to wider and larger areas. Because of the three-dimensional characteristics of this type of propagating fire, its rate of spread has an initial acceleration phase leading to an equilibrium rate of spread when the fire reaches a certain size, which is referred to as a “line-fire” type of spread. Most of the studies on wildland fire propagation have been conducted with line fires and have been concerned with characterizing the equilibrium rate of spread rather than the initial spread from a small ignition source. In this paper, some of the studies conducted to date on the subject of wildland fire growth from a small ignition source, and the physics supporting the mathematical expressions that are used to describe the growth of the fire are discussed. An attempt is also made to provide support for these works through a more fundamental approach to model the problem.
KW - Wildfire
KW - fire growth
KW - fire model
KW - rate of spread
KW - spot ignition
UR - http://www.scopus.com/inward/record.url?scp=85165441428&partnerID=8YFLogxK
U2 - 10.1080/00102202.2023.2239461
DO - 10.1080/00102202.2023.2239461
M3 - Article
AN - SCOPUS:85165441428
SN - 0010-2202
VL - 195
SP - 3542
EP - 3556
JO - Combustion Science and Technology
JF - Combustion Science and Technology
IS - 14
ER -