TY - GEN
T1 - On Computing Probabilistic Explanations for Decision Trees
AU - Arenas, Marcelo
AU - Barceló, Pablo
AU - Romero, Miguel
AU - Subercaseaux, Bernardo
N1 - Funding Information:
Barceló is funded by Fondecyt grant 1200967. Arenas and Barceló have been funded by ANID -Millennium Science Initiative Program - Code ICN17002. Barceló has also been funded by National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Romero is funded by Fondecyt grant 11200956, the Data Observatory Foundation, and the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Subercaseaux is supported by NSF awards CCF-2015445, CCF1955785, and CCF2006953.
Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Formal XAI (explainable AI) is a growing area that focuses on computing explanations with mathematical guarantees for the decisions made by ML models. Inside formal XAI, one of the most studied cases is that of explaining the choices taken by decision trees, as they are traditionally deemed as one of the most interpretable classes of models. Recent work has focused on studying the computation of sufficient reasons, a kind of explanation in which given a decision tree T and an instance x, one explains the decision T(x) by providing a subset y of the features of x such that for any other instance z compatible with y, it holds that T(z) = T(x), intuitively meaning that the features in y are already enough to fully justify the classification of x by T. It has been argued, however, that sufficient reasons constitute a restrictive notion of explanation. For such a reason, the community has started to study their probabilistic counterpart, in which one requires that the probability of T(z) = T(x) must be at least some value δ ∈ (0, 1], where z is a random instance that is compatible with y. Our paper settles the computational complexity of δ-sufficient-reasons over decision trees, showing that both (1) finding δ-sufficient-reasons that are minimal in size, and (2) finding δ-sufficient-reasons that are minimal inclusion-wise, do not admit polynomial-time algorithms (unless PTIME = NP). This is in stark contrast with the deterministic case (δ = 1) where inclusion-wise minimal sufficient-reasons are easy to compute. By doing this, we answer two open problems originally raised by Izza et al., and extend the hardness of explanations for Boolean circuits presented by Wäldchen et al. to the more restricted case of decision trees. On the positive side, we identify structural restrictions of decision trees that make the problem tractable, and show how SAT solvers might be able to tackle these problems in practical settings.
AB - Formal XAI (explainable AI) is a growing area that focuses on computing explanations with mathematical guarantees for the decisions made by ML models. Inside formal XAI, one of the most studied cases is that of explaining the choices taken by decision trees, as they are traditionally deemed as one of the most interpretable classes of models. Recent work has focused on studying the computation of sufficient reasons, a kind of explanation in which given a decision tree T and an instance x, one explains the decision T(x) by providing a subset y of the features of x such that for any other instance z compatible with y, it holds that T(z) = T(x), intuitively meaning that the features in y are already enough to fully justify the classification of x by T. It has been argued, however, that sufficient reasons constitute a restrictive notion of explanation. For such a reason, the community has started to study their probabilistic counterpart, in which one requires that the probability of T(z) = T(x) must be at least some value δ ∈ (0, 1], where z is a random instance that is compatible with y. Our paper settles the computational complexity of δ-sufficient-reasons over decision trees, showing that both (1) finding δ-sufficient-reasons that are minimal in size, and (2) finding δ-sufficient-reasons that are minimal inclusion-wise, do not admit polynomial-time algorithms (unless PTIME = NP). This is in stark contrast with the deterministic case (δ = 1) where inclusion-wise minimal sufficient-reasons are easy to compute. By doing this, we answer two open problems originally raised by Izza et al., and extend the hardness of explanations for Boolean circuits presented by Wäldchen et al. to the more restricted case of decision trees. On the positive side, we identify structural restrictions of decision trees that make the problem tractable, and show how SAT solvers might be able to tackle these problems in practical settings.
UR - http://www.scopus.com/inward/record.url?scp=85150327658&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85150327658
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -