TY - JOUR
T1 - Neurocognitive factorial structure of executive functions
T2 - Evidence from neurotypicals and frontotemporal dementia
AU - Gonzalez-Gomez, Raul
AU - Rodríguez-Villagra, Odir Antonio
AU - Schulte, Michael
AU - Torralva, Teresa
AU - Ibáñez, Agustín
AU - Huepe, David
AU - Fittipaldi, Sol
N1 - Funding Information:
This work is partially supported by grants from CONICET ; ANID/FONDECYT Regular ( 1210195 and 1210176 ); FONCYT-PICT 2017-1820; ANID/FONDAP/15150012; Takeda CW2680521; Sistema General de Regalías ( BPIN2018000100059 ), Universidad del Valle ( CI 5316 ); Alzheimer’s Association GBHI ALZ UK-20-639295 ; and the MULTI-PARTNER CONSORTIUM TO EXPAND DEMENTIA RESEARCH IN LATIN AMERICA [ReDLat, supported by National Institutes of Health , National Institutes of Aging ( R01 AG057234 ), Alzheimer's Association ( SG-20-725707 ), Rainwater Charitable foundation - Tau Consortium, and Global Brain Health Institute)]. The contents of this publication are solely the responsibility of the authors and do not represent the official views of these Institutions.
Funding Information:
This work is partially supported by grants from CONICET; ANID/FONDECYT Regular (1210195 and 1210176); FONCYT-PICT 2017-1820; ANID/FONDAP/15150012; Takeda CW2680521; Sistema General de Regal?as (BPIN2018000100059), Universidad del Valle (CI 5316); Alzheimer's Association GBHI ALZ UK-20-639295; and the MULTI-PARTNER CONSORTIUM TO EXPAND DEMENTIA RESEARCH IN LATIN AMERICA [ReDLat, supported by National Institutes of Health, National Institutes of Aging (R01 AG057234), Alzheimer's Association (SG-20-725707), Rainwater Charitable foundation - Tau Consortium, and Global Brain Health Institute)]. The contents of this publication are solely the responsibility of the authors and do not represent the official views of these Institutions.
Publisher Copyright:
© 2021 The Author(s)
PY - 2021/12
Y1 - 2021/12
N2 - The latent structure of executive functions (EFs) remains controversial. Confirmatory factorial analysis (CFA) has provided support for both multidimensional (assumes EFs to be functionally separable but related components) and bifactor (proposes all components are nested within a common factor) models. However, these CFA models have never been compared in patient samples, nor regarding their neuroanatomical correlates. Here, we systematically contrast both approaches in neurotypicals and in a neurodegenerative lesion model (patients with the behavioral variant frontotemporal dementia, bvFTD), characterized by executive deficits associated with frontal neurodegeneration. First, CFA was used to test the models' fit in a sample of 341 neurotypicals and 29 bvFTD patients based on performance in an executive frontal screening battery which assesses working memory, motor inhibition, verbal inhibition, and abstraction capacity. Second, we compared EFs factor and observed scores between patients and matched controls. Finally, we used voxel-based morphometry (VBM) to compare the grey matter correlates of factor and observed scores. CFA results showed that both models fit the data well. The multidimensional model, however, was more sensitive than the bifactor model and the observed scores to detect EFs impairments in bvFTD patients. VBM results for the multidimensional model revealed common and unique grey matter correlates for EFs components across prefrontal-insular, posterior, and temporal cortices. Regarding the bifactor model, only the common factor was associated with prefrontal-insular hubs. Observed scores presented scant, non-frontal grey matter associations. Converging behavioral and neuroanatomical evidence from healthy populations and a neurodegenerative model of EFs supports an underlying multidimensional structure.
AB - The latent structure of executive functions (EFs) remains controversial. Confirmatory factorial analysis (CFA) has provided support for both multidimensional (assumes EFs to be functionally separable but related components) and bifactor (proposes all components are nested within a common factor) models. However, these CFA models have never been compared in patient samples, nor regarding their neuroanatomical correlates. Here, we systematically contrast both approaches in neurotypicals and in a neurodegenerative lesion model (patients with the behavioral variant frontotemporal dementia, bvFTD), characterized by executive deficits associated with frontal neurodegeneration. First, CFA was used to test the models' fit in a sample of 341 neurotypicals and 29 bvFTD patients based on performance in an executive frontal screening battery which assesses working memory, motor inhibition, verbal inhibition, and abstraction capacity. Second, we compared EFs factor and observed scores between patients and matched controls. Finally, we used voxel-based morphometry (VBM) to compare the grey matter correlates of factor and observed scores. CFA results showed that both models fit the data well. The multidimensional model, however, was more sensitive than the bifactor model and the observed scores to detect EFs impairments in bvFTD patients. VBM results for the multidimensional model revealed common and unique grey matter correlates for EFs components across prefrontal-insular, posterior, and temporal cortices. Regarding the bifactor model, only the common factor was associated with prefrontal-insular hubs. Observed scores presented scant, non-frontal grey matter associations. Converging behavioral and neuroanatomical evidence from healthy populations and a neurodegenerative model of EFs supports an underlying multidimensional structure.
KW - Confirmatory factorial analysis
KW - Executive functions
KW - Lesion model
KW - Voxel-based morphometry
KW - bvFTD
UR - http://www.scopus.com/inward/record.url?scp=85118649119&partnerID=8YFLogxK
U2 - 10.1016/j.cortex.2021.08.015
DO - 10.1016/j.cortex.2021.08.015
M3 - Article
AN - SCOPUS:85118649119
SN - 0010-9452
VL - 145
SP - 79
EP - 96
JO - Cortex
JF - Cortex
ER -