TY - JOUR
T1 - Meronic Einstein-Yang-Mills black hole in 5D and gravitational spin from isospin effect
AU - Canfora, Fabrizio
AU - Gomberoff, Andrés
AU - Oh, Seung Hun
AU - Rojas, Francisco
AU - Salgado-Rebolledo, Patricio
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/6/1
Y1 - 2019/6/1
N2 - We construct an analytic black hole solution in SU(2) Einstein-Yang-Mills theory in five dimensions supporting a Meron field. The gauge field is proportional to a pure gauge and has a non-trivial topological charge. The would-be singularity at the Meron core gets shielded from the exterior by the black hole horizon. The metric has only one integration constant, namely, its ADM mass, which is shown to be finite once an appropriate boundary term is added to the action. The thermodynamics is also worked out, and a first-order phase transition, similar to the one occurring in the Reissner-Nordström case is identified. We also show that the solution produces a spin from isospin effect, i.e., even though the theory is constructed out of bosons only, the combined system of a scalar field and this background may become fermionic. More specifically, we study scalar excitations in this purely bosonic background and find that the system describes fermionic degrees of freedom at spatial infinity. Finally, for the asymptotically AdS5 case, we study its consequences in the context of the AdS/CFT correspondence.
AB - We construct an analytic black hole solution in SU(2) Einstein-Yang-Mills theory in five dimensions supporting a Meron field. The gauge field is proportional to a pure gauge and has a non-trivial topological charge. The would-be singularity at the Meron core gets shielded from the exterior by the black hole horizon. The metric has only one integration constant, namely, its ADM mass, which is shown to be finite once an appropriate boundary term is added to the action. The thermodynamics is also worked out, and a first-order phase transition, similar to the one occurring in the Reissner-Nordström case is identified. We also show that the solution produces a spin from isospin effect, i.e., even though the theory is constructed out of bosons only, the combined system of a scalar field and this background may become fermionic. More specifically, we study scalar excitations in this purely bosonic background and find that the system describes fermionic degrees of freedom at spatial infinity. Finally, for the asymptotically AdS5 case, we study its consequences in the context of the AdS/CFT correspondence.
KW - Black Holes
KW - Field Theories in Higher Dimensions
KW - Gauge Symmetry
KW - Solitons Monopoles and Instantons
UR - http://www.scopus.com/inward/record.url?scp=85067623789&partnerID=8YFLogxK
U2 - 10.1007/JHEP06(2019)081
DO - 10.1007/JHEP06(2019)081
M3 - Article
AN - SCOPUS:85067623789
SN - 1126-6708
VL - 2019
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 6
M1 - 81
ER -