Lombard Effect in Individuals With Nonphonotraumatic Vocal Hyperfunction: Impact on Acoustic, Aerodynamic, and Vocal Fold Vibratory Parameters

Christian Castro, Pavel Prado, Víctor M. Espinoza, Alba Testart, Daphne Marfull, Rodrigo Manriquez, Cara E. Stepp, Daryush D. Mehta, Robert E. Hillman, Matías Zañartu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Purpose: This exploratory study aims to investigate variations in voice production in the presence of background noise (Lombard effect) in individuals with nonphonotraumatic vocal hyperfunction (NPVH) and individuals with typical voices using acoustic, aerodynamic, and vocal fold vibratory measures of phonatory function. Method: Nineteen participants with NPVH and 19 participants with typical voices produced simple vocal tasks in three sequential background conditions: baseline (in quiet), Lombard (in noise), and recovery (5 min after removing the noise). The Lombard condition consisted of speech-shaped noise at 80 dB SPL through audiometric headphones. Acoustic measures from a microphone, glottal aerodynamic parameters estimated from the oral airflow measured with a circumferentially vented pneumotachograph mask, and vocal fold vibratory parameters from high-speed videoendoscopy were analyzed. Results: During the Lombard condition, both groups exhibited a decrease in open quotient and increases in sound pressure level, peak-to-peak glottal airflow, maximum flow declination rate, and subglottal pressure. During the recovery condition, the acoustic and aerodynamic measures of individuals with typical voices returned to those of the baseline condition; however, recovery measures for individuals with NPVH did not return to baseline values. Conclusions: As expected, individuals with NPVH and participants with typical voices exhibited a Lombard effect in the presence of elevated background noise levels. During the recovery condition, individuals with NPVH did not return to their baseline state, pointing to a persistence of the Lombard effect after noise removal. This behavior could be related to disruptions in laryngeal motor control and may play a role in the etiology of NPVH.

Original languageEnglish
Pages (from-to)2881-2895
Number of pages15
JournalJournal of Speech, Language, and Hearing Research
Volume65
Issue number8
DOIs
StatePublished - Aug 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Lombard Effect in Individuals With Nonphonotraumatic Vocal Hyperfunction: Impact on Acoustic, Aerodynamic, and Vocal Fold Vibratory Parameters'. Together they form a unique fingerprint.

Cite this