Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134

Nicole Trefault, Leda Guzmán, Heidi Pérez, Margarita Godoy, Bernardo González

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Cupriavidus necator JMP134 has been extensively studied because of its ability to degrade chloroaromatic compounds, including the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 3-chlorobenzoic acid (3-CB), which is achieved through the pJP4-encoded chlorocatechol degradation gene clusters: tfdCIDIEIFI and tfdDIICIIEIIFII. The present work describes a different tfd-genes expression profile depending on whether C. necator cells were induced with 2,4-D or 3-CB. By contrast, in vitro binding assays of the purified transcriptional activator TfdR showed similar binding to both tfd intergenic regions; these results were confirmed by in vivo studies of the expression of transcriptional lacZ fusions for these intergenic regions. Experiments aimed at investigating whether other pJP4 plasmid or chromosomal regulatory proteins could contribute to the differences in the response of both tfd promoters to induction by 2,4-D and 3-CB showed that the transcriptional regulators from the benzoate degradation pathway, CatR1 and CatR2, affected 3-CB- and 2,4-D-related growth capabilities. It was also determined that the ISJP4-interrupted protein TfdT decreased growth on 3-CB. In addition, an ORF with 34% amino acid identity to IclR-type transcriptional regulator members and located near the tfdII gene cluster module was shown to modulate the 2,4-D growth capability. Taken together, these results suggest that tfd transcriptional regulation in C. necator JMP134 is far more complex than previously thought and that it involves proteins from different transcriptional regulator families.

Original languageEnglish
Pages (from-to)97-106
Number of pages10
JournalInternational Microbiology
Issue number2
StatePublished - 2009
Externally publishedYes


  • Cupriavidus necator
  • LysR transcriptional regulators
  • PJP4 catabolic plasmid
  • tfd catabolic genes


Dive into the research topics of 'Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134'. Together they form a unique fingerprint.

Cite this