Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis

Adriana C. Mera, Yanko Moreno, David Contreras, Nestor Escalona, Manuel F. Meléndrez, Ramalinga Viswanathan Mangalaraja, Héctor D. Mansilla

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

BiOI nanostructured microspheres were obtained from the solvothermal synthesis route in the presence of ethylene glycol and KI as solvent and source of iodide, respectively. Optimal conditions for the synthesis were obtained by using multivariate analysis and choosing the photocatalytic oxidation rate constant of 3,4,5-trihydroxybenzoic acid (gallic acid) as response factor under simulated solar radiation. Response surface methodology (RSM) was used to determine the optimum values of the reaction time and temperature which were 18 h and 126 °C, respectively, to obtain the most active catalyst. In addition, BiOI synthesis using ionic liquid 1-butyl-3-methylimidazolium iodide ([bmim]I) as iodide source was also carried out for the comparison of microstructure and its photocatalytic efficiency. The obtained BiOI nanostructures were characterized by scanning electron microscopy (SEM) attached with energy dispersive spectrometer (EDS), nitrogen adsorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), Fourier transform infrared (FTIR) spectrometry, diffuse reflectance spectroscopy (DRS) and cyclic voltammetry (CV) analyses for their changes in morphological and structural behaviors. It was observed that the synthesis temperature of BiOI nanostructures strongly influenced the morphology, crystalline phase, surface area and electrochemical behavior, and thus affecting the photocatalytic efficiency. The higher photocatalytic removal of gallic acid (60%) was reached within 30 min of irradiation with UV-A on microspheres obtained with ionic liquid. The (1 1 0) crystal phase of BiOI influenced the photocatalytic efficiency.

Original languageEnglish
Pages (from-to)84-92
Number of pages9
JournalSolid State Sciences
Volume63
DOIs
StatePublished - 1 Jan 2017
Externally publishedYes

Keywords

  • BiOI microspheres
  • Gallic acid
  • Photocatalysis
  • Response surface methodology
  • Solar radiation
  • Solvothermal synthesis

Fingerprint

Dive into the research topics of 'Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis'. Together they form a unique fingerprint.

Cite this