TY - JOUR
T1 - Gaming expertise induces meso‑scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling
AU - Coronel-Oliveros, Carlos
AU - Medel, Vicente
AU - Orellana, Sebastián
AU - Rodiño, Julio
AU - Lehue, Fernando
AU - Cruzat, Josephine
AU - Tagliazucchi, Enzo
AU - Brzezicka, Aneta
AU - Orio, Patricio
AU - Kowalczyk-Grębska, Natalia
AU - Ibáñez, Agustín
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/6
Y1 - 2024/6
N2 - Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
AB - Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso‑scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs’ simulated functional connectivity was characterized by a meso‑scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso‑scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.
KW - Attention
KW - Brain stimulation
KW - Functional connectivity
KW - Neural plasticity
KW - Videogames
KW - Whole-brain modeling
UR - http://www.scopus.com/inward/record.url?scp=85192058799&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2024.120633
DO - 10.1016/j.neuroimage.2024.120633
M3 - Article
AN - SCOPUS:85192058799
SN - 1053-8119
VL - 293
JO - NeuroImage
JF - NeuroImage
M1 - 120633
ER -