TY - JOUR
T1 - Fast solution synthesis of nio-gd0.1ce0.9o1.95 nanocomposite via different approach
T2 - Influence of processing parameters and characterizations
AU - Durango-Petro, Jorge
AU - Salvo, Christopher
AU - Usuba, Jonathan
AU - Abarzua, Gonzalo
AU - Sanhueza, Felipe
AU - Mangalaraja, Ramalinga Viswanathan
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6/2
Y1 - 2021/6/2
N2 - The synthesis of the nickel oxide-gadolinium doped ceria (NiO-GDC with 65:35 wt. %) nanocomposite powders with a stoichiometry of Gd0.1Ce0.9O1.95 was performed via fast solution combustion technique; using three different mixing methods: (i) CM (metal cations in an aqueous solution), (ii) HM (hand mortar), and (iii) BM (ball milling). The nanocomposite powders were calcined at 700 °C for 2 h and characterized by Transmission Electron Microscopy (TEM), X-ray fluorescence (XRF), and X-ray Diffraction XRD. The TEM and XRD analyses evidenced the well-dispersed NiO and GDC crystallites with the absence of secondary phases, respectively. Later, the calcined powders (NiO-GDC nanocomposites) were compacted and sintered at 1500 °C for 2 h. The microhardness of the sintered nanocomposites varies in accordance with the synthesis approach: A higher microhardness of 6.04 GPa was obtained for nanocomposites synthesized through CM, while 5.94 and 5.41 GPa were obtained for ball-milling and hand-mortar approach, respectively. Furthermore, it was observed that regardless of the long time-consuming ball-milling process with respect to the hand mortar, there was no significant improvement in the electrical properties.
AB - The synthesis of the nickel oxide-gadolinium doped ceria (NiO-GDC with 65:35 wt. %) nanocomposite powders with a stoichiometry of Gd0.1Ce0.9O1.95 was performed via fast solution combustion technique; using three different mixing methods: (i) CM (metal cations in an aqueous solution), (ii) HM (hand mortar), and (iii) BM (ball milling). The nanocomposite powders were calcined at 700 °C for 2 h and characterized by Transmission Electron Microscopy (TEM), X-ray fluorescence (XRF), and X-ray Diffraction XRD. The TEM and XRD analyses evidenced the well-dispersed NiO and GDC crystallites with the absence of secondary phases, respectively. Later, the calcined powders (NiO-GDC nanocomposites) were compacted and sintered at 1500 °C for 2 h. The microhardness of the sintered nanocomposites varies in accordance with the synthesis approach: A higher microhardness of 6.04 GPa was obtained for nanocomposites synthesized through CM, while 5.94 and 5.41 GPa were obtained for ball-milling and hand-mortar approach, respectively. Furthermore, it was observed that regardless of the long time-consuming ball-milling process with respect to the hand mortar, there was no significant improvement in the electrical properties.
KW - Combustion synthesis
KW - Microstructure
KW - NiO-GDC nanocomposites
KW - Properties
KW - Rietveld refinement
UR - http://www.scopus.com/inward/record.url?scp=85108961134&partnerID=8YFLogxK
U2 - 10.3390/ma14123437
DO - 10.3390/ma14123437
M3 - Article
AN - SCOPUS:85108961134
SN - 1996-1944
VL - 14
JO - Materials
JF - Materials
IS - 12
M1 - 3437
ER -