Fast generation of large scale social networks while incorporating transitive closures

Joseph J. Pfeiffer, Timothy La Fond, Sebastian Moreno, Jennifer Neville

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Scopus citations

Abstract

A key challenge in the social network community is the problem of network generation - that is, how can we create synthetic networks that match characteristics traditionally found in most real world networks? Important characteristics that are present in social networks include a power law degree distribution, small diameter, and large amounts of clustering. However, most current network generators, such as the Chung Lu and Kronecker models, largely ignore the clustering present in a graph and focus on preserving other network statistics, such as the power law distribution. Models such as the exponential random graph model have a transitivity parameter that can capture clustering, but they are computationally difficult to learn, making scaling to large real world networks intractable. In this work, we propose an extension to the Chung Lu random graph model, the Transitive Chung Lu (TCL) model, which incorporates the notion transitive edges. Specifically, it combines the standard Chung Lu model with edges that are formed through transitive closure (e.g., by connecting a 'friend of a friend'). We prove TCL's expected degree distribution is equal to the degree distribution of the original input graph, while still providing the ability to capture the clustering in the network. The single parameter required by our model can be learned in seconds on graphs with millions of edges, networks can be generated in time that is linear in the number of edges. We demonstrate the performance of TCL on four real-world social networks, including an email dataset with hundreds of thousands of nodes and millions of edges, showing TCL generates graphs that match the degree distribution, clustering coefficients and hop plots of the original networks.

Original languageEnglish
Title of host publicationProceedings - 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012
Pages154-165
Number of pages12
DOIs
StatePublished - 2012
Externally publishedYes
Event2012 ASE/IEEE International Conference on Social Computing, SocialCom 2012 and the 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust, PASSAT 2012 - Amsterdam, Netherlands
Duration: 3 Sep 20125 Sep 2012

Publication series

NameProceedings - 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012

Conference

Conference2012 ASE/IEEE International Conference on Social Computing, SocialCom 2012 and the 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust, PASSAT 2012
Country/TerritoryNetherlands
CityAmsterdam
Period3/09/125/09/12

Keywords

  • network generation
  • social network analysis

Fingerprint

Dive into the research topics of 'Fast generation of large scale social networks while incorporating transitive closures'. Together they form a unique fingerprint.

Cite this