TY - JOUR
T1 - Facile sonochemical synthesis of nanostructured FeWO4-rGO and CuCo2O4 nanocomposite for high-rate capability and stable asymmetric (CuCo2O4//FeWO4-rGO) supercapacitors
AU - Gnana Sundara Raj, Balasubramaniam
AU - Mangalaraja, Ramalinga Viswanathan
AU - Vinoth, Victor
AU - Pugazhenthiran, Nalandhiran
AU - Herrera, Francisco Vicente
AU - Jauhar, RO O.M.
AU - Anandan, Sambandam
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/12/15
Y1 - 2023/12/15
N2 - The present work reports iron tungstate (FeWO4) nanostructures with reduced graphene oxide (rGO) as a novel anode material for enhancing the electrochemical properties of asymmetric supercapacitors. The FeWO4-rGO composite nanostructures were successfully synthesized by the one-pot sonochemical method. The synthesized nanocomposites crystal structure and phase purity were investigated using the powder X-ray diffraction (XRD) technique. The Fourier transform infrared (FT-IR) spectrograms demonstrate the presence of functional groups in the composite. The composite's morphology was examined using the high-resolution transmission electron microscopy (HR-TEM) and the field emission scanning electron microscopy (FE-SEM), and it was observed that the FeWO4 nanostructures were uniformly distributed on the reduced graphene oxide surface. The cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) analyses were used to evaluate the electrochemical performance. After 5000 cycles at 10 mA cm− 2, the FeWO4-rGO composite achieved a better rate of efficiency and outstanding cycling performance, with capacitance retained at 68% and 77.8%, respectively. In 1 M Na2SO4, an asymmetric device (CuCo2O4//FeWO4-rGO composite) achieved a high energy density of 21.5 W.h Kg−1 and a power density of 147 W Kg−1. In the FeWO4-rGO nanocomposite, the reduced graphene oxide could enhance the conductivity and the free diffusion processes for the quick ion transport and easy ion access to the storage sites. The obtained results indicated that the FeWO4-rGO nanocomposite could be a good anode electrode material for the next-generation energy storage applications.
AB - The present work reports iron tungstate (FeWO4) nanostructures with reduced graphene oxide (rGO) as a novel anode material for enhancing the electrochemical properties of asymmetric supercapacitors. The FeWO4-rGO composite nanostructures were successfully synthesized by the one-pot sonochemical method. The synthesized nanocomposites crystal structure and phase purity were investigated using the powder X-ray diffraction (XRD) technique. The Fourier transform infrared (FT-IR) spectrograms demonstrate the presence of functional groups in the composite. The composite's morphology was examined using the high-resolution transmission electron microscopy (HR-TEM) and the field emission scanning electron microscopy (FE-SEM), and it was observed that the FeWO4 nanostructures were uniformly distributed on the reduced graphene oxide surface. The cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) analyses were used to evaluate the electrochemical performance. After 5000 cycles at 10 mA cm− 2, the FeWO4-rGO composite achieved a better rate of efficiency and outstanding cycling performance, with capacitance retained at 68% and 77.8%, respectively. In 1 M Na2SO4, an asymmetric device (CuCo2O4//FeWO4-rGO composite) achieved a high energy density of 21.5 W.h Kg−1 and a power density of 147 W Kg−1. In the FeWO4-rGO nanocomposite, the reduced graphene oxide could enhance the conductivity and the free diffusion processes for the quick ion transport and easy ion access to the storage sites. The obtained results indicated that the FeWO4-rGO nanocomposite could be a good anode electrode material for the next-generation energy storage applications.
KW - Asymmetric supercapacitors
KW - Energy density
KW - Energy storage
KW - FeWO-rGO
KW - Sonochemical
UR - http://www.scopus.com/inward/record.url?scp=85171861014&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2023.172156
DO - 10.1016/j.jallcom.2023.172156
M3 - Article
AN - SCOPUS:85171861014
SN - 0925-8388
VL - 968
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 172156
ER -