Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): a critical perspective to support automated fibre placement process

Rajkumar Velu, Nahaad Vaheed, Murali Krishnan Ramachandran, Felix Raspall

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

High-performance polymers are plastics that have better thermal and mechanical properties than other engineering plastics. In general, polymers are relatively light materials when compared to metals. Currently, research era is focused on developing high-performance plastic such as PEEK (polyetheretherketone) for applications in drones, aircrafts, rockets and formula 1. This is due to its durability comparable to metal parts, its significant lightness and its capacity able to withstand operating temperatures of above 150 °C. However, these materials are well established and fabricated using conventional production method, which limits the freedom to achieve high-complexity structures. 3D printing or additive manufacturing techniques allow for complex shapes to be easily produced together with a degree of control over the process parameters. Though fused deposition modelling was attempted earlier with these polymers, more promising approaches such as robot-based extrusion method attained very little attention. In particular, 3D printing mould structures using high-performance materials for automated fibre placement (AFP) process need sufficient attention. This paper attempts experimental investigations with PEEK, using the robotic extrusion method. Thus, the thermal, mechanism of material consolidation, the effects of significant process parameters on critical responses and thermomechanical properties are determined with respect to its application for moulds for AFP process.

Original languageEnglish
Pages (from-to)1007-1025
Number of pages19
JournalInternational Journal of Advanced Manufacturing Technology
Volume108
Issue number4
DOIs
StatePublished - 1 May 2020
Externally publishedYes

Keywords

  • Automated fibre placement process
  • High-performance polymers
  • Robotic 3D printing
  • Thermal characterization

Fingerprint

Dive into the research topics of 'Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): a critical perspective to support automated fibre placement process'. Together they form a unique fingerprint.

Cite this