Evidence for Low-level Dynamical Excitation in Near-resonant Exoplanet Systems

Malena Rice, Xian Yu Wang, Songhu Wang, Avi Shporer, Khalid Barkaoui, Rafael Brahm, Karen A. Collins, Andrés Jordán, Nataliea Lowson, R. Paul Butler, Jeffrey D. Crane, Stephen Shectman, Johanna K. Teske, David Osip, Kevin I. Collins, Felipe Murgas, Gavin Boyle, Francisco J. Pozuelos, Mathilde Timmermans, Emmanuel JehinMichaël Gillon

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The geometries of near-resonant planetary systems offer a relatively pristine window into the initial conditions of exoplanet systems. Given that near-resonant systems have likely experienced minimal dynamical disruptions, the spin-orbit orientations of these systems inform the typical outcomes of quiescent planet formation, as well as the primordial stellar obliquity distribution. However, few measurements have been made to constrain the spin-orbit orientations of near-resonant systems. We present a Rossiter-McLaughlin measurement of the near-resonant warm Jupiter TOI-2202 b, obtained using the Carnegie Planet Finder Spectrograph on the 6.5 m Magellan Clay Telescope. This is the eighth result from the Stellar Obliquities in Long-period Exoplanet Systems survey. We derive a sky-projected 2D spin-orbit angle λ = 26 − 15 + 12 ° and a 3D spin-orbit angle ψ = 31 − 11 + 13 ° , finding that TOI-2202 b—the most massive near-resonant exoplanet with a 3D spin-orbit constraint to date—likely deviates from exact alignment with the host star’s equator. Incorporating the full census of spin-orbit measurements for near-resonant systems, we demonstrate that the current set of near-resonant systems with period ratios P 2/P 1 ≲ 4 is generally consistent with a quiescent formation pathway, with some room for low-level (≲20°) protoplanetary disk misalignments or post-disk-dispersal spin-orbit excitation. Our result constitutes the first population-wide analysis of spin-orbit geometries for near-resonant planetary systems.

Original languageEnglish
Article number266
JournalAstronomical Journal
Volume166
Issue number6
DOIs
StatePublished - 1 Dec 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Evidence for Low-level Dynamical Excitation in Near-resonant Exoplanet Systems'. Together they form a unique fingerprint.

Cite this