TY - JOUR
T1 - Estimation of Foliar Carotenoid Content Using Spectroscopy Wavelet-Based Vegetation Indices
AU - Lopatin, Javier
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2023
Y1 - 2023
N2 - The plant carotenoid (Car) content plays a crucial role in the xanthophyll cycle and provides essential information on the physiological adaptations of plants to environmental stress. Spectroscopy data are essential for the nondestructive prediction of Car and other traits. However, Car content estimation is still behind in terms of accuracy compared to other pigments, such as chlorophyll (Chl). Here, I examined the potential of using the continuous wavelet transform (CWT) on leaf reflectance data to create vegetation indices (VIs). I compared six CWT mother families and six scales and selected the best overall dataset using random forest (RF) regressions. Using a brute-force approach, I created wavelet-based VIs on the best mother family and compared them against established Car reflectance-based VIs. I found that wavelet-based indices have high linear sensitivity to the Car content, contrary to typical nonlinear relationships depicted by the reflectance-based VIs. These relations were theoretically contrasted with the synthetic data created using the PROSPECT-D radiative transfer model. However, the best selection of wavelength bands in wavelet-based VIs varies greatly depending on the spectral characteristics of the input data before the transformation.
AB - The plant carotenoid (Car) content plays a crucial role in the xanthophyll cycle and provides essential information on the physiological adaptations of plants to environmental stress. Spectroscopy data are essential for the nondestructive prediction of Car and other traits. However, Car content estimation is still behind in terms of accuracy compared to other pigments, such as chlorophyll (Chl). Here, I examined the potential of using the continuous wavelet transform (CWT) on leaf reflectance data to create vegetation indices (VIs). I compared six CWT mother families and six scales and selected the best overall dataset using random forest (RF) regressions. Using a brute-force approach, I created wavelet-based VIs on the best mother family and compared them against established Car reflectance-based VIs. I found that wavelet-based indices have high linear sensitivity to the Car content, contrary to typical nonlinear relationships depicted by the reflectance-based VIs. These relations were theoretically contrasted with the synthetic data created using the PROSPECT-D radiative transfer model. However, the best selection of wavelength bands in wavelet-based VIs varies greatly depending on the spectral characteristics of the input data before the transformation.
KW - Brute-force approach
KW - PROSPECT
KW - continuous wavelet transform (CWT)
KW - noise equivalent (NE)
KW - random forest (RF)
KW - vegetation indices (VIs)
UR - http://www.scopus.com/inward/record.url?scp=85147295573&partnerID=8YFLogxK
U2 - 10.1109/LGRS.2023.3237010
DO - 10.1109/LGRS.2023.3237010
M3 - Article
AN - SCOPUS:85147295573
SN - 1545-598X
VL - 20
JO - IEEE Geoscience and Remote Sensing Letters
JF - IEEE Geoscience and Remote Sensing Letters
M1 - 2500405
ER -