Ensemble of evolving data clouds and fuzzy models for weather time series prediction

Eduardo Soares, Pyramo Costa, Bruno Costa, Daniel Leite

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

This paper describes a variation of data cloud-based intelligent method known as typicality-and-eccentricity-based method for data analysis (TEDA). The objective is to develop data-centric nonlinear and time-varying models to predict mean monthly temperature. TEDA is an incremental algorithm that considers the data density and scattering of clouds over the data space. The method does not require a priori knowledge of the dataset and user-defined parameters. However, if some knowledge about the number of clouds and rules is available, then it can be expressed through a single parameter. Past values of minimum, maximum and mean monthly temperature, as well as previous values of exogenous variables such as cloudiness, rainfall and humidity are considered in the analysis. A non-parametric Spearman correlation based method is proposed to rank and select the most relevant features and time delays for a more accurate prediction. The datasets were obtained from weather stations located in main Brazilian cities such as Sao Paulo, Manaus, Porto Alegre, and Natal. These cities are known to have particular weather characteristics. TEDA results are compared with results provided by the evolving Takagi–Sugeno (eTS) and the extended Takagi–Sugeno (xTS) methods. Additionally, an ensemble of cloud and fuzzy models and fuzzy aggregation operators is developed to give single-valued and granular predictions of the time series. Granular predictions convey a range of possible temperature values and give an idea about the error and uncertainty associated with the data.

Original languageEnglish
Pages (from-to)445-453
Number of pages9
JournalApplied Soft Computing Journal
Volume64
DOIs
StatePublished - Mar 2018
Externally publishedYes

Keywords

  • Data clouds
  • Ensemble learning
  • Evolving fuzzy systems
  • Online data stream
  • Weather time series prediction

Fingerprint

Dive into the research topics of 'Ensemble of evolving data clouds and fuzzy models for weather time series prediction'. Together they form a unique fingerprint.

Cite this