TY - JOUR
T1 - Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium
AU - Kumar, M. Praveen
AU - Murugadoss, G.
AU - Mangalaraja, R. V.
AU - Kumar, M. Rajesh
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
PY - 2021/1
Y1 - 2021/1
N2 - The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO2, NiO, Co2O3, etc.,) have been desirable for the oxygen evolution reaction (OER) in alkaline electrolyte. Among these transition metal oxides, the CuO based composites are most promising constituents for the water oxidation process due to their good electronic properties and the anticipated synergistic effect to alter the surface properties of the materials dramatically to favor the electrocatalysis. Here, we have reported the synthesis of CuO-SnO2 nanoparticles network by a facile chemical method as the electrocatalyst for an efficient OER. The physiochemical properties of CuO-SnO2 nanoparticles network electrocatalyst were characterized by using various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopies (XPS) and transmission electron microscopy (TEM) for their structural, absorption/presence of functional groups, elemental composition and morphology, respectively. Further, the electrochemical properties of the catalysts were investigated using cyclic voltammetry (CV), chronopotentiometry and Tafel curve measurements in alkaline electrolyte. The electrocatalysts showed a low onset potential of 1.39 V vs reversible hydrogen electrode (RHE) and high stability for 6 h in 1.0 M KOH electrolyte, which demonstrated their better performance than the benchmark Ni electrocatalyst.
AB - The development of low cost, long-term stable and highly efficient electrocatalyst is one of the major current research activities towards electrochemical water oxidation process for the clean-energy hydrogen production. The transition metal oxides (CuO, TiO2, NiO, Co2O3, etc.,) have been desirable for the oxygen evolution reaction (OER) in alkaline electrolyte. Among these transition metal oxides, the CuO based composites are most promising constituents for the water oxidation process due to their good electronic properties and the anticipated synergistic effect to alter the surface properties of the materials dramatically to favor the electrocatalysis. Here, we have reported the synthesis of CuO-SnO2 nanoparticles network by a facile chemical method as the electrocatalyst for an efficient OER. The physiochemical properties of CuO-SnO2 nanoparticles network electrocatalyst were characterized by using various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopies (XPS) and transmission electron microscopy (TEM) for their structural, absorption/presence of functional groups, elemental composition and morphology, respectively. Further, the electrochemical properties of the catalysts were investigated using cyclic voltammetry (CV), chronopotentiometry and Tafel curve measurements in alkaline electrolyte. The electrocatalysts showed a low onset potential of 1.39 V vs reversible hydrogen electrode (RHE) and high stability for 6 h in 1.0 M KOH electrolyte, which demonstrated their better performance than the benchmark Ni electrocatalyst.
KW - Electrocatalyst
KW - Nanocomposites
KW - Oxygen evolution reaction
KW - TEM
KW - XRD
UR - http://www.scopus.com/inward/record.url?scp=85098631065&partnerID=8YFLogxK
U2 - 10.1007/s00339-020-04228-4
DO - 10.1007/s00339-020-04228-4
M3 - Article
AN - SCOPUS:85098631065
SN - 0947-8396
VL - 127
JO - Applied Physics A: Materials Science and Processing
JF - Applied Physics A: Materials Science and Processing
IS - 1
M1 - 66
ER -