Abstract
We use distributionally robust optimization (DRO) to model a general class of newsvendor problems with unknown demand distribution. The goal is to find an order quantity that minimizes the worst-case expected cost among an ambiguity set of distributions. The ambiguity set consists of those distributions that are not far—in the sense of the total variation distance—from a nominal distribution. The maximum distance allowed in the ambiguity set (called level of robustness) places the DRO between the risk-neutral stochastic programming and robust optimization models. An important problem a decision maker faces is how to determine the level of robustness—or, equivalently, how to find an appropriate level of risk-aversion. We answer this question in two ways. Our first approach relates the level of robustness and risk to the regions of demand that are critical (in a precise sense we introduce) to the optimal cost. Our second approach establishes new quantitative relationships between the DRO model and the corresponding risk-neutral and classical robust optimization models. To achieve these goals, we first focus on a single-product setting and derive explicit formulas and properties of the optimal solution as a function of the level of robustness. Then, we demonstrate the practical and managerial relevance of our results by applying our findings to a healthcare problem to reserve operating room time for cardiovascular surgeries. Finally, we extend some of our results to the multi-product setting and illustrate them numerically.
Original language | English |
---|---|
Pages (from-to) | 854-868 |
Number of pages | 15 |
Journal | European Journal of Operational Research |
Volume | 279 |
Issue number | 3 |
DOIs | |
State | Published - 16 Dec 2019 |
Externally published | Yes |
Keywords
- Calibration of level of robustness
- Distributionally robust optimization
- Inventory
- Newsvendor problem
- Operating room time reservation problem