Abstract
Doping twisted bilayer graphene away from charge neutrality leads to an enormous buildup of charge inhomogeneities within each moiré unit cell. Here, we show, using unbiased real-space self-consistent Hartree calculations on a relaxed lattice, that Coulomb interactions smoothen this charge imbalance by changing the occupation of earlier identified "ring" orbitals in the AB/BA region and "center" orbitals at the AA region. For hole doping, this implies an increase of the energy of the states at the Γ point, leading to a further flattening of the flat bands and a pinning of the Van Hove singularity at the Fermi level. The charge smoothening will affect the subtle competition between different possible correlated phases.
Original language | English |
---|---|
Article number | 205114 |
Journal | Physical Review B |
Volume | 100 |
Issue number | 20 |
DOIs | |
State | Published - 11 Nov 2019 |