TY - JOUR
T1 - Black holes with gravitational hair in higher dimensions
AU - Anabalón, Andrés
AU - Canfora, Fabrizio
AU - Giacomini, Alex
AU - Oliva, Julio
PY - 2011/10/7
Y1 - 2011/10/7
N2 - A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Bañados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.
AB - A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Bañados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.
UR - http://www.scopus.com/inward/record.url?scp=80655128096&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.84.084015
DO - 10.1103/PhysRevD.84.084015
M3 - Article
AN - SCOPUS:80655128096
SN - 1550-7998
VL - 84
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 8
M1 - 084015
ER -