Bandit learning in concave n-person games

Mario Bravo, David Leslie, Panayotis Mertikopoulos

Research output: Contribution to journalConference articlepeer-review

63 Scopus citations

Abstract

This paper examines the long-run behavior of learning with bandit feedback in non-cooperative concave games. The bandit framework accounts for extremely low-information environments where the agents may not even know they are playing a game; as such, the agents' most sensible choice in this setting would be to employ a no-regret learning algorithm. In general, this does not mean that the players' behavior stabilizes in the long run: no-regret learning may lead to cycles, even with perfect gradient information. However, if a standard monotonicity condition is satisfied, our analysis shows that no-regret learning based on mirror descent with bandit feedback converges to Nash equilibrium with probability 1. We also derive an upper bound for the convergence rate of the process that nearly matches the best attainable rate for single-agent bandit stochastic optimization.

Original languageEnglish
Pages (from-to)5661-5671
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Externally publishedYes
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: 2 Dec 20188 Dec 2018

Fingerprint

Dive into the research topics of 'Bandit learning in concave n-person games'. Together they form a unique fingerprint.

Cite this