Automatic stomatal segmentation based on Delaunay-rayleigh frequency distance

Miguel Carrasco, Patricio A. Toledo, Ramiro Velázquez, Odemir M. Bruno

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The CO2 and water vapor exchange between leaf and atmosphere are relevant for plant physiology. This process is done through the stomata. These structures are fundamental in the study of plants since their properties are linked to the evolutionary process of the plant, as well as its environmental and phytohormonal conditions. Stomatal detection is a complex task due to the noise and morphology of the microscopic images. Although in recent years segmentation algorithms have been developed that automate this process, they all use techniques that explore chromatic characteristics. This research explores a unique feature in plants, which corresponds to the stomatal spatial distribution within the leaf structure. Unlike segmentation techniques based on deep learning tools, we emphasize the search for an optimal threshold level, so that a high percentage of stomata can be detected, independent of the size and shape of the stomata. This last feature has not been reported in the literature, except for those results of geometric structure formation in the salt formation and other biological formations.

Original languageEnglish
Article number1613
Pages (from-to)1-17
Number of pages17
JournalPlants
Volume9
Issue number11
DOIs
StatePublished - Nov 2020
Externally publishedYes

Keywords

  • Delaunay-Rayleigh frequency
  • Image segmentation
  • Stomatal segmentation

Fingerprint

Dive into the research topics of 'Automatic stomatal segmentation based on Delaunay-rayleigh frequency distance'. Together they form a unique fingerprint.

Cite this