Abstract
The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
Original language | English |
---|---|
Article number | 2 |
Journal | Living Reviews in Relativity |
Volume | 26 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2023 |
Externally published | Yes |
Keywords
- Black holes
- Extreme mass ratio in-spirals
- Gravitational waves
- Multi-messenger
- Stellar remnants
Access to Document
Fingerprint
Dive into the research topics of 'Astrophysics with the Laser Interferometer Space Antenna'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Living Reviews in Relativity, Vol. 26, No. 1, 2, 12.2023.
Research output: Contribution to journal › Review article › peer-review
TY - JOUR
T1 - Astrophysics with the Laser Interferometer Space Antenna
AU - Amaro-Seoane, Pau
AU - Andrews, Jeff
AU - Arca Sedda, Manuel
AU - Askar, Abbas
AU - Baghi, Quentin
AU - Balasov, Razvan
AU - Bartos, Imre
AU - Bavera, Simone S.
AU - Bellovary, Jillian
AU - Berry, Christopher P.L.
AU - Berti, Emanuele
AU - Bianchi, Stefano
AU - Blecha, Laura
AU - Blondin, Stéphane
AU - Bogdanović, Tamara
AU - Boissier, Samuel
AU - Bonetti, Matteo
AU - Bonoli, Silvia
AU - Bortolas, Elisa
AU - Breivik, Katelyn
AU - Capelo, Pedro R.
AU - Caramete, Laurentiu
AU - Cattorini, Federico
AU - Charisi, Maria
AU - Chaty, Sylvain
AU - Chen, Xian
AU - Chruślińska, Martyna
AU - Chua, Alvin J.K.
AU - Church, Ross
AU - Colpi, Monica
AU - D’Orazio, Daniel
AU - Danielski, Camilla
AU - Davies, Melvyn B.
AU - Dayal, Pratika
AU - De Rosa, Alessandra
AU - Derdzinski, Andrea
AU - Destounis, Kyriakos
AU - Dotti, Massimo
AU - Duţan, Ioana
AU - Dvorkin, Irina
AU - Fabj, Gaia
AU - Foglizzo, Thierry
AU - Ford, Saavik
AU - Fouvry, Jean Baptiste
AU - Franchini, Alessia
AU - Fragos, Tassos
AU - Fryer, Chris
AU - Gaspari, Massimo
AU - Gerosa, Davide
AU - Graziani, Luca
AU - Groot, Paul
AU - Habouzit, Melanie
AU - Haggard, Daryl
AU - Haiman, Zoltan
AU - Han, Wen Biao
AU - Istrate, Alina
AU - Johansson, Peter H.
AU - Khan, Fazeel Mahmood
AU - Kimpson, Tomas
AU - Kokkotas, Kostas
AU - Kong, Albert
AU - Korol, Valeriya
AU - Kremer, Kyle
AU - Kupfer, Thomas
AU - Lamberts, Astrid
AU - Larson, Shane
AU - Lau, Mike
AU - Liu, Dongliang
AU - Lloyd-Ronning, Nicole
AU - Lodato, Giuseppe
AU - Lupi, Alessandro
AU - Ma, Chung Pei
AU - Maccarone, Tomas
AU - Mandel, Ilya
AU - Mangiagli, Alberto
AU - Mapelli, Michela
AU - Mathis, Stéphane
AU - Mayer, Lucio
AU - McGee, Sean
AU - McKernan, Berry
AU - Miller, M. Coleman
AU - Mota, David F.
AU - Mumpower, Matthew
AU - Nasim, Syeda S.
AU - Nelemans, Gijs
AU - Noble, Scott
AU - Pacucci, Fabio
AU - Panessa, Francesca
AU - Paschalidis, Vasileios
AU - Pfister, Hugo
AU - Porquet, Delphine
AU - Quenby, John
AU - Ricarte, Angelo
AU - Röpke, Friedrich K.
AU - Regan, John
AU - Rosswog, Stephan
AU - Ruiter, Ashley
AU - Ruiz, Milton
AU - Runnoe, Jessie
AU - Schneider, Raffaella
AU - Schnittman, Jeremy
AU - Secunda, Amy
AU - Sesana, Alberto
AU - Seto, Naoki
AU - Shao, Lijing
AU - Shapiro, Stuart
AU - Sopuerta, Carlos
AU - Stone, Nicholas C.
AU - Suvorov, Arthur
AU - Tamanini, Nicola
AU - Tamfal, Tomas
AU - Tauris, Thomas
AU - Temmink, Karel
AU - Tomsick, John
AU - Toonen, Silvia
AU - Torres-Orjuela, Alejandro
AU - Toscani, Martina
AU - Tsokaros, Antonios
AU - Unal, Caner
AU - Vázquez-Aceves, Verónica
AU - Valiante, Rosa
AU - van Putten, Maurice
AU - van Roestel, Jan
AU - Vignali, Christian
AU - Volonteri, Marta
AU - Wu, Kinwah
AU - Younsi, Ziri
AU - Yu, Shenghua
AU - Zane, Silvia
AU - Zwick, Lorenz
AU - Antonini, Fabio
AU - Baibhav, Vishal
AU - Barausse, Enrico
AU - Bonilla Rivera, Alexander
AU - Branchesi, Marica
AU - Branduardi-Raymont, Graziella
AU - Burdge, Kevin
AU - Chakraborty, Srija
AU - Cuadra, Jorge
AU - Dage, Kristen
AU - Davis, Benjamin
AU - de Mink, Selma E.
AU - Decarli, Roberto
AU - Doneva, Daniela
AU - Escoffier, Stephanie
AU - Gandhi, Poshak
AU - Haardt, Francesco
AU - Lousto, Carlos O.
AU - Nissanke, Samaya
AU - Nordhaus, Jason
AU - O’Shaughnessy, Richard
AU - Portegies Zwart, Simon
AU - Pound, Adam
AU - Schussler, Fabian
AU - Sergijenko, Olga
AU - Spallicci, Alessandro
AU - Vernieri, Daniele
AU - Vigna-Gómez, Alejandro
N1 - Funding Information: P. Dayal acknowledges support from the European Research council (ERC-717001) and from the Netherlands Research Council NWO (016.VIDI.189.162). P.H. Johansson acknowledges the support from the European Research Council (ERC-818930). S. Toonen acknowledges support from the Netherlands Research Council NWO (VENI 639.041.645 Grants) C. Unal is supported by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project CoGraDS - CZ.02.1.01/0.0/0.0/15_003/0000437). S. Chaty acknowledges the LabEx UnivEarthS for the funding of Interface project I10 “From binary evolution towards merging of compact objects”. A. De Rosa acknowledges financial contribution from the agreement ASI-INAF n.2017-14-H.O E. Berti is supported by NSF Grants No. PHY-1912550 and AST-2006538, NASA ATP Grants No. 17-ATP17-0225 and 19-ATP19-0051, NSF-XSEDE Grant No. PHY-090003, and NSF Grant PHY-20043. D. Gerosa is supported by European Union’s H2020 ERC Starting Grant No. 945155–GWmining, Leverhulme Trust Grant No. RPG-2019-350 and Royal Society Grant No. RGS-R2-202004. T. Bogdanovic acknowledges support by the NASA award No. 80NSSC19K0319 and by the NSF award AST-1908042. D. Porquet acknowledges funding support from CNES. C. Danielski acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) B.L. Davis acknowledges support from Tamkeen under the NYU Abu Dhabi Research Institute Grant CAP3. F. Pacucci acknowledges support from a Clay Fellowship by the SAO and from the Black Hole Initiative, which is funded by grants from the John Templeton Foundation and the Gordon and Betty Moore Foundation. A.J. Ruiter acknowledges support from the Australian Research Council Future Fellowship Grant FT170100243. V. Paschalidis is supported by NSF Grant PHY-1912619 and NASA Grant 80NSSC20K1542 to the University of Arizona, and NSF-XSEDE Grant TG-PHY190020. D. Haggard acknowledges support from the NSERC Discovery Grant and Canada Research Chairs programs, and the Bob Wares Science Innovation Prospectors Fund. M. Toscani acknowledges European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 823823 (RISE DUSTBUSTERS project) and COST Action CA16104 - Gravitational waves, black holes and fundamental physics, supported by COST (European Cooperation in Science and Technology). M. Chruslinska, A. Istrate and G. Nelemans acknowledge support from Netherlands Research Council NWO. T. Fragos and S. Bavera acknowledge support from a Swiss National Science Foundation Professorship Grant (project numbers PP00P2_176868 and PP00P2_211006). Publisher Copyright: © 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
AB - The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
KW - Black holes
KW - Extreme mass ratio in-spirals
KW - Gravitational waves
KW - Multi-messenger
KW - Stellar remnants
UR - http://www.scopus.com/inward/record.url?scp=85150880633&partnerID=8YFLogxK
U2 - 10.1007/s41114-022-00041-y
DO - 10.1007/s41114-022-00041-y
M3 - Review article
AN - SCOPUS:85150880633
SN - 2367-3613
VL - 26
JO - Living Reviews in Relativity
JF - Living Reviews in Relativity
IS - 1
M1 - 2
ER -