An Inconvenient Truth about Forecast Combinations

Pablo Pincheira-Brown, Andrea Bentancor, Nicolás Hardy

Research output: Contribution to journalArticlepeer-review

Abstract

It is well-known that the weighted averages of two competing forecasts may reduce mean squared prediction errors (MSPE) and may also introduce certain inefficiencies. In this paper, we take an in-depth view of one particular type of inefficiency stemming from simple combination schemes: Mincer and Zarnowitz inefficiency or auto-inefficiency for short. Under mild assumptions, we show that linear convex forecast combinations are almost always auto-inefficient, and, therefore, greater reductions in MSPE are almost always possible. In particular, we show that the process of taking averages of forecasts may induce inefficiencies in the combination, even when individual forecasts are efficient. Furthermore, we show that the so-called “optimal weighted average” traditionally presented in the literature may indeed be inefficient as well. Finally, we illustrate our findings with simulations and an empirical application in the context of the combination of headline inflation forecasts for eight European economies. Overall, our results indicate that in situations in which a number of different forecasts are available, the combination of all of them should not be the last step taken in the search of forecast accuracy. Attempts to take advantage of potential inefficiencies stemming from the combination process should also be considered.

Original languageEnglish
Article number3806
JournalMathematics
Volume11
Issue number18
DOIs
StatePublished - Sep 2023
Externally publishedYes

Keywords

  • core inflation
  • efficiency
  • forecast combinations
  • inflation
  • international inflation
  • mathematics
  • predictability
  • time series

Fingerprint

Dive into the research topics of 'An Inconvenient Truth about Forecast Combinations'. Together they form a unique fingerprint.

Cite this