TY - JOUR
T1 - A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars
AU - Pascucci, Ilaria
AU - Mulders, Gijs D.
AU - Gould, Andrew
AU - Fernandes, Rachel
N1 - Publisher Copyright:
© 2018. The American Astronomical Society. All rights reserved..
PY - 2018/4/1
Y1 - 2018/4/1
N2 - We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1-6 R ⊕ and periods <100 days, we find that, except for a normalization factor, the occurrence rate versus q can be described by the same broken power law with a break at ∼3 10-5 independent of host type for hosts below 1 Mo. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host < 1 Mo criterion. The break in q for the microlensing planet population, which mostly probes the region outside the snowline, is ∼3-10 times higher than that inferred from Kepler. Thus, the most common planet inside the snowline is ∼3-10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.
AB - We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1-6 R ⊕ and periods <100 days, we find that, except for a normalization factor, the occurrence rate versus q can be described by the same broken power law with a break at ∼3 10-5 independent of host type for hosts below 1 Mo. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host < 1 Mo criterion. The break in q for the microlensing planet population, which mostly probes the region outside the snowline, is ∼3-10 times higher than that inferred from Kepler. Thus, the most common planet inside the snowline is ∼3-10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.
KW - data analysis-planetary systems-planets and satellites
KW - formation
KW - methods
UR - http://www.scopus.com/inward/record.url?scp=85045575517&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/aab6ac
DO - 10.3847/2041-8213/aab6ac
M3 - Article
AN - SCOPUS:85045575517
SN - 2041-8205
VL - 856
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L28
ER -