TY - JOUR
T1 - A spectral survey of WASP-19b with ESPRESSO
AU - Sedaghati, Elyar
AU - MacDonald, Ryan J.
AU - Casasayas-Barris, Núria
AU - Hoeijmakers, H. Jens
AU - Boffin, Henri M.J.
AU - Rodler, Florian
AU - Brahm, Rafael
AU - Jones, Matías
AU - Sánchez-López, Alejandro
AU - Carleo, Ilaria
AU - Figueira, Pedro
AU - Mehner, Andrea
AU - López-Puertas, Manuel
N1 - Publisher Copyright:
© 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from lowresolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of HI, FeI, MgI, CaI, NaI, and KI neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fe I and place a 3σ upper limit of log (XFe/X⊙) ≈ -1.83 ± 0.11 on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H2O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02±0.15 σ) in the cross-correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does not constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low-resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a ~100× sub-solar TiO abundance, precisely constrained to log XTiO ≈ -7.52 ± 0.38, consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results.
AB - High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from lowresolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of HI, FeI, MgI, CaI, NaI, and KI neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fe I and place a 3σ upper limit of log (XFe/X⊙) ≈ -1.83 ± 0.11 on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H2O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02±0.15 σ) in the cross-correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does not constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low-resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a ~100× sub-solar TiO abundance, precisely constrained to log XTiO ≈ -7.52 ± 0.38, consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results.
KW - Methods: data analysis
KW - Planets and satellites: atmospheres
KW - Planets and satellites: individual: WASP-19b
KW - Stars: activity
KW - Stars: individual: WASP-19
KW - Techniques: spectroscopic
UR - http://www.scopus.com/inward/record.url?scp=85108146455&partnerID=8YFLogxK
U2 - 10.1093/mnras/stab1164
DO - 10.1093/mnras/stab1164
M3 - Review article
AN - SCOPUS:85108146455
SN - 0035-8711
VL - 505
SP - 435
EP - 458
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -