TY - JOUR
T1 - A previously unexposed forest soil microbial community degrades high levels of the pollutant 2,4,6-trichlorophenol
AU - Sánchez, M. A.
AU - Vásquez, M.
AU - González, B.
PY - 2004/12
Y1 - 2004/12
N2 - 2,4,6-Trichlorophenol (2,4,6-TCP) is a hazardous pollutant that is efficiently degraded by some aerobic soil bacterial isolates under laboratory conditions. The degradation of this pollutant in soils and its effect on the soil microbial community are poorly understood. We report here the ability of a previously unexposed forest soil microbiota to degrade high levels of 2,4,6-TCP and describe the changes in the soil microbial community found by terminal restriction fragment length polymorphism (T-RFLP) analysis. After 30 days of incubation, about 50% degradation of this pollutant was observed in soils amended with 50 to 5,000 ppm of 2,4,6-TCP. The T-RFLP analysis showed that the soil bacterial community was essentially unchanged after exposure to up to 500 ppm of 2,4,6-TCP. However, a significant decrease in richness was found with 2,000 and 5,000 ppm of 2,4,6-TCP, even though the removal of this pollutant remained high. The introduction of Ralstonia eutropha JMP134 or R. eutropha MS1, two efficient 2,4,6-TCP degraders, to this soil did not improve degradation of this pollutant, supporting the significant bioremediation potential of this previously unexposed, endogenous forest soil microbial community.
AB - 2,4,6-Trichlorophenol (2,4,6-TCP) is a hazardous pollutant that is efficiently degraded by some aerobic soil bacterial isolates under laboratory conditions. The degradation of this pollutant in soils and its effect on the soil microbial community are poorly understood. We report here the ability of a previously unexposed forest soil microbiota to degrade high levels of 2,4,6-TCP and describe the changes in the soil microbial community found by terminal restriction fragment length polymorphism (T-RFLP) analysis. After 30 days of incubation, about 50% degradation of this pollutant was observed in soils amended with 50 to 5,000 ppm of 2,4,6-TCP. The T-RFLP analysis showed that the soil bacterial community was essentially unchanged after exposure to up to 500 ppm of 2,4,6-TCP. However, a significant decrease in richness was found with 2,000 and 5,000 ppm of 2,4,6-TCP, even though the removal of this pollutant remained high. The introduction of Ralstonia eutropha JMP134 or R. eutropha MS1, two efficient 2,4,6-TCP degraders, to this soil did not improve degradation of this pollutant, supporting the significant bioremediation potential of this previously unexposed, endogenous forest soil microbial community.
UR - http://www.scopus.com/inward/record.url?scp=10444275157&partnerID=8YFLogxK
U2 - 10.1128/AEM.70.12.7567-7570.2004
DO - 10.1128/AEM.70.12.7567-7570.2004
M3 - Article
C2 - 15574963
AN - SCOPUS:10444275157
SN - 0099-2240
VL - 70
SP - 7567
EP - 7570
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 12
ER -